Targeted zwitterionic near-infrared fluorophores for improved optical imaging

Hak Soo Choi, Summer L. Gibbs, Jeong Heon Lee, Soon Hee Kim, Yoshitomo Ashitate, Fangbing Liu, Hoon Hyun, Gwang Li Park, Yang Xie, Soochan Bae, Maged Henary, John V. Frangioni

Research output: Contribution to journalArticlepeer-review

437 Scopus citations

Abstract

The signal-to-background ratio (SBR) is the key determinant of sensitivity, detectability and linearity in optical imaging. As signal strength is often constrained by fundamental limits, background reduction becomes an important approach for improving the SBR. We recently reported that a zwitterionic near-infrared (NIR) fluorophore, ZW800-1, exhibits low background. Here we show that this fluorophore provides a much-improved SBR when targeted to cancer cells or proteins by conjugation with a cyclic RGD peptide, fibrinogen or antibodies. ZW800-1 outperforms the commercially available NIR fluorophores IRDye800-CW and Cy5.5 in vitro for immunocytometry, histopathology and immunoblotting and in vivo for image-guided surgery. In tumor model systems, a tumor-to-background ratio of 17.2 is achieved at 4 h after injection of ZW800-1 conjugated to cRGD compared to ratios of 5.1 with IRDye800-CW and 2.7 with Cy5.5. Our results suggest that introducing zwitterionic properties into targeted fluorophores may be a general strategy for improving the SBR in diagnostic and therapeutic applications.

Original languageEnglish (US)
Pages (from-to)148-153
Number of pages6
JournalNature biotechnology
Volume31
Issue number2
DOIs
StatePublished - Feb 2013
Externally publishedYes

ASJC Scopus subject areas

  • Biotechnology
  • Bioengineering
  • Applied Microbiology and Biotechnology
  • Molecular Medicine
  • Biomedical Engineering

Fingerprint

Dive into the research topics of 'Targeted zwitterionic near-infrared fluorophores for improved optical imaging'. Together they form a unique fingerprint.

Cite this