TY - JOUR
T1 - Synaptically released glutamate does not overwhelm transporters on hippocampal astrocytes during high-frequency stimulation
AU - Diamond, Jeffrey S.
AU - Jahr, Craig E.
PY - 2000
Y1 - 2000
N2 - In addition to maintaining the extracellular glutamate concentration at low ambient levels, high-affinity glutamate transporters play a direct role in synaptic transmission by speeding the clearance of glutamate from the synaptic cleft and limiting the extent to which transmitter spills over between synapses. Transporters are expressed in both neurons and glia, but glial transporters are likely to play the major role in removing synaptically released glutamate from the extracellular space. The role of transporters in synaptic transmission has been studied directly by measuring synaptically activated, transporter-mediated currents (STCs) in neurons and astrocytes. Here we record from astrocytes in the CA1 region of hippocampal slices and elicit STCs with high-frequency (100 Hz) stimulus trains of varying length to determine whether transporters are overwhelmed by stimuli that induce long- term potentiation. We show that, at near-physiological temperatures (34°C), high-frequency stimulation (HFS) does not affect the rate at which transporters clear glutamate from the extrasynaptic space. Thus, although spillover between synapses during 'normal' stimulation may compromise the absolute synapse specificity of fast excitatory synaptic transmission, spillover is not exacerbated during HFS. Transporter capacity is diminished somewhat at room temperature (24°C), although transmitter released during brief, 'theta 'burst' stimulation is still cleared as quickly as following a single stimulus, even when transport capacity is partially diminished by pharmacological means.
AB - In addition to maintaining the extracellular glutamate concentration at low ambient levels, high-affinity glutamate transporters play a direct role in synaptic transmission by speeding the clearance of glutamate from the synaptic cleft and limiting the extent to which transmitter spills over between synapses. Transporters are expressed in both neurons and glia, but glial transporters are likely to play the major role in removing synaptically released glutamate from the extracellular space. The role of transporters in synaptic transmission has been studied directly by measuring synaptically activated, transporter-mediated currents (STCs) in neurons and astrocytes. Here we record from astrocytes in the CA1 region of hippocampal slices and elicit STCs with high-frequency (100 Hz) stimulus trains of varying length to determine whether transporters are overwhelmed by stimuli that induce long- term potentiation. We show that, at near-physiological temperatures (34°C), high-frequency stimulation (HFS) does not affect the rate at which transporters clear glutamate from the extrasynaptic space. Thus, although spillover between synapses during 'normal' stimulation may compromise the absolute synapse specificity of fast excitatory synaptic transmission, spillover is not exacerbated during HFS. Transporter capacity is diminished somewhat at room temperature (24°C), although transmitter released during brief, 'theta 'burst' stimulation is still cleared as quickly as following a single stimulus, even when transport capacity is partially diminished by pharmacological means.
UR - http://www.scopus.com/inward/record.url?scp=0034127640&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0034127640&partnerID=8YFLogxK
U2 - 10.1152/jn.2000.83.5.2835
DO - 10.1152/jn.2000.83.5.2835
M3 - Article
C2 - 10805681
AN - SCOPUS:0034127640
SN - 0022-3077
VL - 83
SP - 2835
EP - 2843
JO - Journal of Neurophysiology
JF - Journal of Neurophysiology
IS - 5
ER -