Subclinical capillary changes in non-proliferative diabetic retinopathy

Johnny Tam, Kavita P. Dhamdhere, Pavan Tiruveedhula, Brandon J. Lujan, Robert N. Johnson, Marcus A. Bearse, Anthony J. Adams, Austin Roorda

Research output: Contribution to journalArticlepeer-review

61 Scopus citations

Abstract

PURPOSE.: To establish adaptive optics scanning laser ophthalmoscopy as a method to detect and characterize microscopic signs of diabetic retinopathy in capillaries and cone photoreceptors in the parafovea. METHODS.: Recently, adaptive optics scanning laser ophthalmoscope (AOSLO) has enabled noninvasive assessment of photoreceptors, capillaries, and leukocytes in the retinas of live human subjects. Repeated application of AOSLO imaging along with comparison to fluorescein angiography was used to track individual capillaries near the foveal avascular zone (FAZ) from one eye affected with severe non-proliferative diabetic retinopathy. Fluorescein angiography was used to identify clinical signs of diabetic retinopathy, such as microaneurysms and intraretinal microvascular abnormalities, and corresponding regions were imaged and assessed using the AOSLO. In addition, the structural integrity of photoreceptors and the spatial distribution of leukocytes around the parafoveal capillary network were quantitatively assessed. RESULTS.: Capillaries and cone photoreceptors were visualized using the AOSLO without the use of injected contrast agents. Although the majority of capillaries were stable over a period of 16 months, one capillary at the edge of the FAZ dropped out, leading to a small but significant increase in FAZ size. Longitudinal assessment of the capillaries also showed microaneurysm formation and disappearance as well as the formation of tiny capillary bends similar in appearance to intraretinal microvascular abnormalities. The leukocytes in the capillary network were found to preferentially travel through the same routes in all four visits, suggesting that these channels are robust against small changes to the surrounding capillaries. In this eye, cone photoreceptor spacing was increased in the fovea when compared with normal data but stable across all visits. CONCLUSIONS.: AOSLO imaging can be used to longitudinally track capillaries, leukocytes, and photoreceptors in diabetic retinopathy. Capillary changes that can be detected include dropout of individual capillaries as well as formation and disappearance of microaneurysms.

Original languageEnglish (US)
Pages (from-to)E692-E703
JournalOptometry and Vision Science
Volume89
Issue number5
DOIs
StatePublished - May 2012

Keywords

  • adaptive optics
  • capillaries
  • diabetic retinopathy
  • leukocyte
  • microaneurysm
  • photoreceptors

ASJC Scopus subject areas

  • Ophthalmology
  • Optometry

Fingerprint Dive into the research topics of 'Subclinical capillary changes in non-proliferative diabetic retinopathy'. Together they form a unique fingerprint.

Cite this