Speed of human tooth movement in growers and non-growers: Selection of applied stress matters

Laura Iwasaki, Y. Liu, H. Liu, Jeffrey Nickel

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

Objectives: To test that the speed of tooth translation is not affected by stress magnitude and growth status. Setting and Sample Population: Advanced Education Orthodontic clinics at the Universities of Nebraska Medical Center and Missouri-Kansas City. Forty-six consenting subjects with orthodontic treatment plans involving maxillary first premolar extractions. Materials and Methods: This randomized split-mouth study used segmental mechanics with definitive posterior anchorage and individual vertical-loop maxillary canine retraction appliances and measured three-dimensional tooth movements. Height and cephalometric superimposition changes determined growing (G) and non-growing (NG) subjects. Subjects were appointed for 9-11 visits over 84 days for maxillary dental impressions to measure three-dimensional tooth movement and to ensure retraction forces were continuously applied via calibrated nitinol coil springs. Springs were custom selected to apply two different stresses of 4, 13, 26, 52 or 78 kPa to maxillary canines in each subject. Statistical analyses (α=0.050) included ANOVA, effect size (partial η2) and Tukey's Honest Significant Difference (HSD) and two-group t tests. Results: Distolateral translation speeds were 0.034±0.015, 0.047±0.019, 0.066±0.025, 0.068±0.016 and 0.079±0.030 mm/d for 4, 13, 26, 52 and 78 kPa, respectively. Stress significantly affected speed and partial η2=0.376. Overall, more distopalatal rotation was shown by teeth moved by 78 kPa (18.03±9.50º) compared to other stresses (3.86±6.83º), and speeds were significantly higher (P=.001) in G (0.062±0.026 mm/d) than NG subjects (0.041±0.019 mm/d). Conclusions: Stress magnitude and growth status significantly affected the speed of tooth translation. Optimal applied stresses were 26-52 kPa, and overall speeds were 1.5-fold faster in G compared to NG subjects.

Original languageEnglish (US)
Pages (from-to)63-67
Number of pages5
JournalOrthodontics and Craniofacial Research
Volume20
DOIs
StatePublished - Jun 1 2017
Externally publishedYes

Fingerprint

Tooth Movement Techniques
Tooth
Orthodontics
Canidae
Cephalometry
Bicuspid
Growth
Mechanics
Mouth
Analysis of Variance
Education
Population

Keywords

  • force
  • human
  • orthodontic mechanics
  • stress
  • tooth movement

ASJC Scopus subject areas

  • Orthodontics
  • Surgery
  • Oral Surgery
  • Otorhinolaryngology

Cite this

Speed of human tooth movement in growers and non-growers : Selection of applied stress matters. / Iwasaki, Laura; Liu, Y.; Liu, H.; Nickel, Jeffrey.

In: Orthodontics and Craniofacial Research, Vol. 20, 01.06.2017, p. 63-67.

Research output: Contribution to journalArticle

@article{dcb5d5970d284b7f97fc9439f8d5e86b,
title = "Speed of human tooth movement in growers and non-growers: Selection of applied stress matters",
abstract = "Objectives: To test that the speed of tooth translation is not affected by stress magnitude and growth status. Setting and Sample Population: Advanced Education Orthodontic clinics at the Universities of Nebraska Medical Center and Missouri-Kansas City. Forty-six consenting subjects with orthodontic treatment plans involving maxillary first premolar extractions. Materials and Methods: This randomized split-mouth study used segmental mechanics with definitive posterior anchorage and individual vertical-loop maxillary canine retraction appliances and measured three-dimensional tooth movements. Height and cephalometric superimposition changes determined growing (G) and non-growing (NG) subjects. Subjects were appointed for 9-11 visits over 84 days for maxillary dental impressions to measure three-dimensional tooth movement and to ensure retraction forces were continuously applied via calibrated nitinol coil springs. Springs were custom selected to apply two different stresses of 4, 13, 26, 52 or 78 kPa to maxillary canines in each subject. Statistical analyses (α=0.050) included ANOVA, effect size (partial η2) and Tukey's Honest Significant Difference (HSD) and two-group t tests. Results: Distolateral translation speeds were 0.034±0.015, 0.047±0.019, 0.066±0.025, 0.068±0.016 and 0.079±0.030 mm/d for 4, 13, 26, 52 and 78 kPa, respectively. Stress significantly affected speed and partial η2=0.376. Overall, more distopalatal rotation was shown by teeth moved by 78 kPa (18.03±9.50º) compared to other stresses (3.86±6.83º), and speeds were significantly higher (P=.001) in G (0.062±0.026 mm/d) than NG subjects (0.041±0.019 mm/d). Conclusions: Stress magnitude and growth status significantly affected the speed of tooth translation. Optimal applied stresses were 26-52 kPa, and overall speeds were 1.5-fold faster in G compared to NG subjects.",
keywords = "force, human, orthodontic mechanics, stress, tooth movement",
author = "Laura Iwasaki and Y. Liu and H. Liu and Jeffrey Nickel",
year = "2017",
month = "6",
day = "1",
doi = "10.1111/ocr.12161",
language = "English (US)",
volume = "20",
pages = "63--67",
journal = "Orthodontics and Craniofacial Research",
issn = "1601-6335",
publisher = "Wiley-Blackwell",

}

TY - JOUR

T1 - Speed of human tooth movement in growers and non-growers

T2 - Selection of applied stress matters

AU - Iwasaki, Laura

AU - Liu, Y.

AU - Liu, H.

AU - Nickel, Jeffrey

PY - 2017/6/1

Y1 - 2017/6/1

N2 - Objectives: To test that the speed of tooth translation is not affected by stress magnitude and growth status. Setting and Sample Population: Advanced Education Orthodontic clinics at the Universities of Nebraska Medical Center and Missouri-Kansas City. Forty-six consenting subjects with orthodontic treatment plans involving maxillary first premolar extractions. Materials and Methods: This randomized split-mouth study used segmental mechanics with definitive posterior anchorage and individual vertical-loop maxillary canine retraction appliances and measured three-dimensional tooth movements. Height and cephalometric superimposition changes determined growing (G) and non-growing (NG) subjects. Subjects were appointed for 9-11 visits over 84 days for maxillary dental impressions to measure three-dimensional tooth movement and to ensure retraction forces were continuously applied via calibrated nitinol coil springs. Springs were custom selected to apply two different stresses of 4, 13, 26, 52 or 78 kPa to maxillary canines in each subject. Statistical analyses (α=0.050) included ANOVA, effect size (partial η2) and Tukey's Honest Significant Difference (HSD) and two-group t tests. Results: Distolateral translation speeds were 0.034±0.015, 0.047±0.019, 0.066±0.025, 0.068±0.016 and 0.079±0.030 mm/d for 4, 13, 26, 52 and 78 kPa, respectively. Stress significantly affected speed and partial η2=0.376. Overall, more distopalatal rotation was shown by teeth moved by 78 kPa (18.03±9.50º) compared to other stresses (3.86±6.83º), and speeds were significantly higher (P=.001) in G (0.062±0.026 mm/d) than NG subjects (0.041±0.019 mm/d). Conclusions: Stress magnitude and growth status significantly affected the speed of tooth translation. Optimal applied stresses were 26-52 kPa, and overall speeds were 1.5-fold faster in G compared to NG subjects.

AB - Objectives: To test that the speed of tooth translation is not affected by stress magnitude and growth status. Setting and Sample Population: Advanced Education Orthodontic clinics at the Universities of Nebraska Medical Center and Missouri-Kansas City. Forty-six consenting subjects with orthodontic treatment plans involving maxillary first premolar extractions. Materials and Methods: This randomized split-mouth study used segmental mechanics with definitive posterior anchorage and individual vertical-loop maxillary canine retraction appliances and measured three-dimensional tooth movements. Height and cephalometric superimposition changes determined growing (G) and non-growing (NG) subjects. Subjects were appointed for 9-11 visits over 84 days for maxillary dental impressions to measure three-dimensional tooth movement and to ensure retraction forces were continuously applied via calibrated nitinol coil springs. Springs were custom selected to apply two different stresses of 4, 13, 26, 52 or 78 kPa to maxillary canines in each subject. Statistical analyses (α=0.050) included ANOVA, effect size (partial η2) and Tukey's Honest Significant Difference (HSD) and two-group t tests. Results: Distolateral translation speeds were 0.034±0.015, 0.047±0.019, 0.066±0.025, 0.068±0.016 and 0.079±0.030 mm/d for 4, 13, 26, 52 and 78 kPa, respectively. Stress significantly affected speed and partial η2=0.376. Overall, more distopalatal rotation was shown by teeth moved by 78 kPa (18.03±9.50º) compared to other stresses (3.86±6.83º), and speeds were significantly higher (P=.001) in G (0.062±0.026 mm/d) than NG subjects (0.041±0.019 mm/d). Conclusions: Stress magnitude and growth status significantly affected the speed of tooth translation. Optimal applied stresses were 26-52 kPa, and overall speeds were 1.5-fold faster in G compared to NG subjects.

KW - force

KW - human

KW - orthodontic mechanics

KW - stress

KW - tooth movement

UR - http://www.scopus.com/inward/record.url?scp=85021119088&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85021119088&partnerID=8YFLogxK

U2 - 10.1111/ocr.12161

DO - 10.1111/ocr.12161

M3 - Article

C2 - 28643922

AN - SCOPUS:85021119088

VL - 20

SP - 63

EP - 67

JO - Orthodontics and Craniofacial Research

JF - Orthodontics and Craniofacial Research

SN - 1601-6335

ER -