Spatio-temporal patterns of demyelination and remyelination in the cuprizone mouse model

Ian Tagge, Audrey O'Connor, Priya Chaudhary, Jim Pollaro, Yosef Berlow, Megan Chalupsky, Dennis Bourdette, Randall (Randy) Woltjer, Mac Johnson, William Rooney

Research output: Contribution to journalArticle

26 Scopus citations

Abstract

Cuprizone administration in mice provides a reproducible model of demyelination and spontaneous remyelination, and has been useful in understanding important aspects of human disease, including multiple sclerosis. In this study, we apply high spatial resolution quantitative MRI techniques to establish the spatio-temporal patterns of acute demyelination in C57BL/6 mice after 6 weeks of cuprizone administration, and subsequent remyelination after 6 weeks of post-cuprizone recovery. MRI measurements were complemented with Black Gold II stain for myelin and immunohistochemical stains for associated tissue changes. Gene expression was evaluated using the Allen Gene Expression Atlas. Twentyfive C57BL/6 male mice were split into control and cuprizone groups; MRI data were obtained at baseline, after 6 weeks of cuprizone, and 6 weeks post-cuprizone. High-resolution (100μm isotropic) whole-brain coverage magnetization transfer ratio (MTR) parametric maps demonstrated concurrent caudal-to-rostral and medial-to-lateral gradients of MTR decrease within corpus callosum (CC) that correlated well with demyelination assessed histologically. Our results show that demyelination was not limited to the midsagittal line of the corpus callosum, and also that opposing gradients of demyelination occur in the lateral and medial CC. T2-weighted MRI gray/white matter contrast was strong at baseline, weak after 6 weeks of cuprizone treatment, and returned to a limited extent after recovery. MTR decreases during demyelination were observed throughout the brain, most clearly in callosal white matter. Myelin damage and repair appear to be influenced by proximity to oligodendrocyte progenitor cell populations and exhibit an inverse correlation with myelin basic protein gene expression. These findings suggest that susceptibility to injury and ability to repair vary across the brain, and whole-brain analysis is necessary to accurately characterize this model. Whole-brain parametric mapping across time is essential for gaining a real understanding of disease processes in-vivo. MTR increases in healthy mice throughout adolescence and adulthood were observed, illustrating the need for appropriate agematched controls. Elucidating the unique and site-specific demyelination in the cuprizone model may offer new insights into in mechanisms of both damage and repair in human demyelinating diseases.

Original languageEnglish (US)
Article numbere0152480
JournalPLoS One
Volume11
Issue number4
DOIs
StatePublished - Apr 1 2016

    Fingerprint

ASJC Scopus subject areas

  • Agricultural and Biological Sciences(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Medicine(all)

Cite this