Somatostatin-mediated inhibitory postsynaptic potential in sympathetically denervated guinea-pig submucosal neurones

Ke-Zhong Shen, A. Surprenant

Research output: Contribution to journalArticle

29 Citations (Scopus)

Abstract

1. Intracellular recordings were made from submucosal neurones in guinea-pig ileum. In some animals, the extrinsic (sympathetic) nerves to the submucosal plexus were severed 5-7 days previously. The actions of somatostatin and somatostatin analogues on membrane potential, membrane current and inhibitory postsynaptic potentials (IPSPs) were examined. 2. Somatostatin, somatastatin (1-28), [D-Trp8] somatostatin and the somatostatin analogue CGP 23996 all produced equivalent maximum hyperpolarizations or outward currents; half-maximal concentrations (EC50 values) were 9-11 nM. The somatostatin analogue MK 678 had an EC50 of 0.9 nM. Extrinsic sympathectomy did not alter concentration-response relations for somatostatin or its analogues. 3. Somatostatin (> 100 nM) produced hyperpolarization or outward current that declined almost completely during superfusion for 2-4 min; decline of the somatostatin current was exponential with a time constant of 30 s in the presence of 2 μM somatostatin. Desensitization was not altered by extrinsic denervation. 4. Recovery from desensitization was rapid and followed the time course of agonist wash-out. Forskolin, phorbol esters, dithiothreitol, hydrogen peroxide, concanavalin A, or reducing temperature from 35 to 29°C did not alter the time course, degree of, or recovery from desensitization. 5. The somatostatin-induced desensitization was of the homologous type; no cross-desensitization to opiate or α2-adrenoceptor agonists (which activate the same potassium conductance) occurred. 6. Somatostatin desensitization did not alter the adrenergic IPSP seen in sympathetically innervated preparations but abolished the non-adrenergic IPSP recorded from normal preparations and from preparations in which the extrinsic sympathetic nerve supply had been surgically removed. 7. The selective blockade of the non-adrenergic IPSP by the homologous-type somatostatin desensitization characterized in the present study provides strong support for the hypothesis that somatostatin is the neurotransmitter underlying the non-adrenergic IPSP in both normal and extrinsically denervated submucosal neurones.

Original languageEnglish (US)
Pages (from-to)619-635
Number of pages17
JournalJournal of Physiology
Volume470
StatePublished - 1993

Fingerprint

Inhibitory Postsynaptic Potentials
Somatostatin
Guinea Pigs
Neurons
seglitide
Opiate Alkaloids
Submucous Plexus
Sympathectomy
Dithiothreitol
Phorbol Esters
Denervation
Colforsin
Concanavalin A
Ileum
Adrenergic Agents
Membrane Potentials
Adrenergic Receptors
Hydrogen Peroxide
Neurotransmitter Agents

ASJC Scopus subject areas

  • Physiology

Cite this

Somatostatin-mediated inhibitory postsynaptic potential in sympathetically denervated guinea-pig submucosal neurones. / Shen, Ke-Zhong; Surprenant, A.

In: Journal of Physiology, Vol. 470, 1993, p. 619-635.

Research output: Contribution to journalArticle

@article{46de6bec84154fc1b0a6e663814a769f,
title = "Somatostatin-mediated inhibitory postsynaptic potential in sympathetically denervated guinea-pig submucosal neurones",
abstract = "1. Intracellular recordings were made from submucosal neurones in guinea-pig ileum. In some animals, the extrinsic (sympathetic) nerves to the submucosal plexus were severed 5-7 days previously. The actions of somatostatin and somatostatin analogues on membrane potential, membrane current and inhibitory postsynaptic potentials (IPSPs) were examined. 2. Somatostatin, somatastatin (1-28), [D-Trp8] somatostatin and the somatostatin analogue CGP 23996 all produced equivalent maximum hyperpolarizations or outward currents; half-maximal concentrations (EC50 values) were 9-11 nM. The somatostatin analogue MK 678 had an EC50 of 0.9 nM. Extrinsic sympathectomy did not alter concentration-response relations for somatostatin or its analogues. 3. Somatostatin (> 100 nM) produced hyperpolarization or outward current that declined almost completely during superfusion for 2-4 min; decline of the somatostatin current was exponential with a time constant of 30 s in the presence of 2 μM somatostatin. Desensitization was not altered by extrinsic denervation. 4. Recovery from desensitization was rapid and followed the time course of agonist wash-out. Forskolin, phorbol esters, dithiothreitol, hydrogen peroxide, concanavalin A, or reducing temperature from 35 to 29°C did not alter the time course, degree of, or recovery from desensitization. 5. The somatostatin-induced desensitization was of the homologous type; no cross-desensitization to opiate or α2-adrenoceptor agonists (which activate the same potassium conductance) occurred. 6. Somatostatin desensitization did not alter the adrenergic IPSP seen in sympathetically innervated preparations but abolished the non-adrenergic IPSP recorded from normal preparations and from preparations in which the extrinsic sympathetic nerve supply had been surgically removed. 7. The selective blockade of the non-adrenergic IPSP by the homologous-type somatostatin desensitization characterized in the present study provides strong support for the hypothesis that somatostatin is the neurotransmitter underlying the non-adrenergic IPSP in both normal and extrinsically denervated submucosal neurones.",
author = "Ke-Zhong Shen and A. Surprenant",
year = "1993",
language = "English (US)",
volume = "470",
pages = "619--635",
journal = "Journal of Physiology",
issn = "0022-3751",
publisher = "Wiley-Blackwell",

}

TY - JOUR

T1 - Somatostatin-mediated inhibitory postsynaptic potential in sympathetically denervated guinea-pig submucosal neurones

AU - Shen, Ke-Zhong

AU - Surprenant, A.

PY - 1993

Y1 - 1993

N2 - 1. Intracellular recordings were made from submucosal neurones in guinea-pig ileum. In some animals, the extrinsic (sympathetic) nerves to the submucosal plexus were severed 5-7 days previously. The actions of somatostatin and somatostatin analogues on membrane potential, membrane current and inhibitory postsynaptic potentials (IPSPs) were examined. 2. Somatostatin, somatastatin (1-28), [D-Trp8] somatostatin and the somatostatin analogue CGP 23996 all produced equivalent maximum hyperpolarizations or outward currents; half-maximal concentrations (EC50 values) were 9-11 nM. The somatostatin analogue MK 678 had an EC50 of 0.9 nM. Extrinsic sympathectomy did not alter concentration-response relations for somatostatin or its analogues. 3. Somatostatin (> 100 nM) produced hyperpolarization or outward current that declined almost completely during superfusion for 2-4 min; decline of the somatostatin current was exponential with a time constant of 30 s in the presence of 2 μM somatostatin. Desensitization was not altered by extrinsic denervation. 4. Recovery from desensitization was rapid and followed the time course of agonist wash-out. Forskolin, phorbol esters, dithiothreitol, hydrogen peroxide, concanavalin A, or reducing temperature from 35 to 29°C did not alter the time course, degree of, or recovery from desensitization. 5. The somatostatin-induced desensitization was of the homologous type; no cross-desensitization to opiate or α2-adrenoceptor agonists (which activate the same potassium conductance) occurred. 6. Somatostatin desensitization did not alter the adrenergic IPSP seen in sympathetically innervated preparations but abolished the non-adrenergic IPSP recorded from normal preparations and from preparations in which the extrinsic sympathetic nerve supply had been surgically removed. 7. The selective blockade of the non-adrenergic IPSP by the homologous-type somatostatin desensitization characterized in the present study provides strong support for the hypothesis that somatostatin is the neurotransmitter underlying the non-adrenergic IPSP in both normal and extrinsically denervated submucosal neurones.

AB - 1. Intracellular recordings were made from submucosal neurones in guinea-pig ileum. In some animals, the extrinsic (sympathetic) nerves to the submucosal plexus were severed 5-7 days previously. The actions of somatostatin and somatostatin analogues on membrane potential, membrane current and inhibitory postsynaptic potentials (IPSPs) were examined. 2. Somatostatin, somatastatin (1-28), [D-Trp8] somatostatin and the somatostatin analogue CGP 23996 all produced equivalent maximum hyperpolarizations or outward currents; half-maximal concentrations (EC50 values) were 9-11 nM. The somatostatin analogue MK 678 had an EC50 of 0.9 nM. Extrinsic sympathectomy did not alter concentration-response relations for somatostatin or its analogues. 3. Somatostatin (> 100 nM) produced hyperpolarization or outward current that declined almost completely during superfusion for 2-4 min; decline of the somatostatin current was exponential with a time constant of 30 s in the presence of 2 μM somatostatin. Desensitization was not altered by extrinsic denervation. 4. Recovery from desensitization was rapid and followed the time course of agonist wash-out. Forskolin, phorbol esters, dithiothreitol, hydrogen peroxide, concanavalin A, or reducing temperature from 35 to 29°C did not alter the time course, degree of, or recovery from desensitization. 5. The somatostatin-induced desensitization was of the homologous type; no cross-desensitization to opiate or α2-adrenoceptor agonists (which activate the same potassium conductance) occurred. 6. Somatostatin desensitization did not alter the adrenergic IPSP seen in sympathetically innervated preparations but abolished the non-adrenergic IPSP recorded from normal preparations and from preparations in which the extrinsic sympathetic nerve supply had been surgically removed. 7. The selective blockade of the non-adrenergic IPSP by the homologous-type somatostatin desensitization characterized in the present study provides strong support for the hypothesis that somatostatin is the neurotransmitter underlying the non-adrenergic IPSP in both normal and extrinsically denervated submucosal neurones.

UR - http://www.scopus.com/inward/record.url?scp=0027445714&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0027445714&partnerID=8YFLogxK

M3 - Article

C2 - 7905923

AN - SCOPUS:0027445714

VL - 470

SP - 619

EP - 635

JO - Journal of Physiology

JF - Journal of Physiology

SN - 0022-3751

ER -