Abstract
1. Hyperexcitability in denervated skeletal muscle is associated with the expression of SK3, a small-conductance Ca2+-activated K+ channel (SK channel). SK currents were examined in dissociated fibres from flexor digitorum brevis (FDB) muscle using the whole-cell patch clamp configuration. 2. Depolarization activated a K+-selective, apamin-sensitive and iberiotoxin-insensitive current, detected as a tail current upon repolarization, in fibres from denervated but not innervated muscle. Dialysis of the fibres with 20 mM EGTA in the patch pipette solution eliminated the tail current, consistent with this current reflecting Ca2+-activated SK channels expressed only in denervated muscle. 3. Activation of SK tail currents depended on the duration of the depolarizing pulse, consistent with a rise in intracellular Ca2+ due to release from the sarcoplasmic reticulum (SR) and influx through voltage-gated Ca2+ channels. 4. The envelope of SK tail currents was diminished by 10 μM ryanodine for all pulse durations, whereas 2 mM cobalt reduced the SK tail current for pulses greater than 80 ms, demonstrating that Ca2+ release from the SR during short pulses primarily activated SK channels. 5. In current clamp mode with the resting membrane potential set at -70 mV, denervation decreased the action potential threshold by ∼8 mV. Application of apamin increased the action potential threshold in denervated fibres to that measured in innervated fibres, suggesting that SK channel activity modulates the apparent action potential threshold. 6. These results are consistent with a model in which SK channel activity in the T-tubules of denervated skeletal muscle causes a local increase in K+ concentration that results in hyperexcitability.
Original language | English (US) |
---|---|
Pages (from-to) | 397-407 |
Number of pages | 11 |
Journal | Journal of Physiology |
Volume | 536 |
Issue number | 2 |
DOIs | |
State | Published - Oct 15 2001 |
Fingerprint
ASJC Scopus subject areas
- Physiology
Cite this
Small-conductance calcium-activated potassium currents in mouse hyperexcitable denervated skeletal muscle. / Neelands, Torben R.; Herson, Paco S.; Jacobson, David; Adelman, John; Maylie, James.
In: Journal of Physiology, Vol. 536, No. 2, 15.10.2001, p. 397-407.Research output: Contribution to journal › Article
}
TY - JOUR
T1 - Small-conductance calcium-activated potassium currents in mouse hyperexcitable denervated skeletal muscle
AU - Neelands, Torben R.
AU - Herson, Paco S.
AU - Jacobson, David
AU - Adelman, John
AU - Maylie, James
PY - 2001/10/15
Y1 - 2001/10/15
N2 - 1. Hyperexcitability in denervated skeletal muscle is associated with the expression of SK3, a small-conductance Ca2+-activated K+ channel (SK channel). SK currents were examined in dissociated fibres from flexor digitorum brevis (FDB) muscle using the whole-cell patch clamp configuration. 2. Depolarization activated a K+-selective, apamin-sensitive and iberiotoxin-insensitive current, detected as a tail current upon repolarization, in fibres from denervated but not innervated muscle. Dialysis of the fibres with 20 mM EGTA in the patch pipette solution eliminated the tail current, consistent with this current reflecting Ca2+-activated SK channels expressed only in denervated muscle. 3. Activation of SK tail currents depended on the duration of the depolarizing pulse, consistent with a rise in intracellular Ca2+ due to release from the sarcoplasmic reticulum (SR) and influx through voltage-gated Ca2+ channels. 4. The envelope of SK tail currents was diminished by 10 μM ryanodine for all pulse durations, whereas 2 mM cobalt reduced the SK tail current for pulses greater than 80 ms, demonstrating that Ca2+ release from the SR during short pulses primarily activated SK channels. 5. In current clamp mode with the resting membrane potential set at -70 mV, denervation decreased the action potential threshold by ∼8 mV. Application of apamin increased the action potential threshold in denervated fibres to that measured in innervated fibres, suggesting that SK channel activity modulates the apparent action potential threshold. 6. These results are consistent with a model in which SK channel activity in the T-tubules of denervated skeletal muscle causes a local increase in K+ concentration that results in hyperexcitability.
AB - 1. Hyperexcitability in denervated skeletal muscle is associated with the expression of SK3, a small-conductance Ca2+-activated K+ channel (SK channel). SK currents were examined in dissociated fibres from flexor digitorum brevis (FDB) muscle using the whole-cell patch clamp configuration. 2. Depolarization activated a K+-selective, apamin-sensitive and iberiotoxin-insensitive current, detected as a tail current upon repolarization, in fibres from denervated but not innervated muscle. Dialysis of the fibres with 20 mM EGTA in the patch pipette solution eliminated the tail current, consistent with this current reflecting Ca2+-activated SK channels expressed only in denervated muscle. 3. Activation of SK tail currents depended on the duration of the depolarizing pulse, consistent with a rise in intracellular Ca2+ due to release from the sarcoplasmic reticulum (SR) and influx through voltage-gated Ca2+ channels. 4. The envelope of SK tail currents was diminished by 10 μM ryanodine for all pulse durations, whereas 2 mM cobalt reduced the SK tail current for pulses greater than 80 ms, demonstrating that Ca2+ release from the SR during short pulses primarily activated SK channels. 5. In current clamp mode with the resting membrane potential set at -70 mV, denervation decreased the action potential threshold by ∼8 mV. Application of apamin increased the action potential threshold in denervated fibres to that measured in innervated fibres, suggesting that SK channel activity modulates the apparent action potential threshold. 6. These results are consistent with a model in which SK channel activity in the T-tubules of denervated skeletal muscle causes a local increase in K+ concentration that results in hyperexcitability.
UR - http://www.scopus.com/inward/record.url?scp=0035887265&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0035887265&partnerID=8YFLogxK
U2 - 10.1111/j.1469-7793.2001.0397c.xd
DO - 10.1111/j.1469-7793.2001.0397c.xd
M3 - Article
C2 - 11600675
AN - SCOPUS:0035887265
VL - 536
SP - 397
EP - 407
JO - Journal of Physiology
JF - Journal of Physiology
SN - 0022-3751
IS - 2
ER -