Sex-specific anti-oxidant capacities in astrocytes

Mingyue Liu, Nabil Alkayed, Esteban Oyarzabal, Patricia D. Hurn

Research output: Contribution to journalArticle

Abstract

Introduction: Neuronal cell death after exposure to various cytotoxins is sex-specific; male cells being more sensitive to nitrosative stress and excitotoxity than female neurons (1). We previously demonstrated that astrocytes cultured from female brain (XX) are less susceptible to cell death induced by oxygen-glucose deprivation (OGD) and hydrogen peroxide (H2O2) than male (XY) astrocytes (2). In the current study, we tested the hypothesis that male and female astrocytes respond differently to oxidative stress, in part due to differences in antioxidant capacity between male and female astrocytes. Methods: Primary cultured cortical astrocytes were prepared from 1-3-day old male and female rat pups separately and grown to confluency in steroid-free medium. Male and female rat pups were distinguished by a larger genital papilla and longer ano-genital distance in male vs. female pups. Sex was confirmed by inspecting internal organs and gonads after laporatomy, e.g. uterine horns in females and ductus deferens in males, and by multiplex polymerase chain reaction (PCR) using male-specific marker SRY (sex determination region on the Y chromosome, responsible for testes formation) and the universal marker myogenin (Myog), which is expressed in both males and females. At day 14 in vitro (div), cultures were homogenized for protein and mRNA isolation. The protein levels of three antioxidant enzymes: glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT), were determined by Western blotting in male and female astrocytes. Furthermore, GPx mRNA level was determined by RT-PCR, and GPx activity was measured in male and female astrocytes using a glutathione peroxidase activity assay kit measures GPx activity indirectly by a coupled reaction with glutathione reductase. Results: The protein levels of SOD and CAT were not different between male and female astrocytes. However, the level of GPx protein was 3-fold higher in female compared to male astrocytes (3±0.6 fold, n=4, p

Original languageEnglish (US)
JournalJournal of Cerebral Blood Flow and Metabolism
Volume27
Issue numberSUPPL. 1
StatePublished - Nov 13 2007

Fingerprint

Oxidants
Astrocytes
Glutathione Peroxidase
Catalase
Superoxide Dismutase
Proteins
Cell Death
Antioxidants
Myogenin
Messenger RNA
Vas Deferens
Glutathione Reductase
Y Chromosome
Multiplex Polymerase Chain Reaction
Cytotoxins
Gonads
Hydrogen Peroxide
Testis
Oxidative Stress
Western Blotting

ASJC Scopus subject areas

  • Endocrinology
  • Neuroscience(all)
  • Endocrinology, Diabetes and Metabolism

Cite this

Sex-specific anti-oxidant capacities in astrocytes. / Liu, Mingyue; Alkayed, Nabil; Oyarzabal, Esteban; Hurn, Patricia D.

In: Journal of Cerebral Blood Flow and Metabolism, Vol. 27, No. SUPPL. 1, 13.11.2007.

Research output: Contribution to journalArticle

Liu, Mingyue ; Alkayed, Nabil ; Oyarzabal, Esteban ; Hurn, Patricia D. / Sex-specific anti-oxidant capacities in astrocytes. In: Journal of Cerebral Blood Flow and Metabolism. 2007 ; Vol. 27, No. SUPPL. 1.
@article{cdcf7411375b4856bfd01b4580d7c7f6,
title = "Sex-specific anti-oxidant capacities in astrocytes",
abstract = "Introduction: Neuronal cell death after exposure to various cytotoxins is sex-specific; male cells being more sensitive to nitrosative stress and excitotoxity than female neurons (1). We previously demonstrated that astrocytes cultured from female brain (XX) are less susceptible to cell death induced by oxygen-glucose deprivation (OGD) and hydrogen peroxide (H2O2) than male (XY) astrocytes (2). In the current study, we tested the hypothesis that male and female astrocytes respond differently to oxidative stress, in part due to differences in antioxidant capacity between male and female astrocytes. Methods: Primary cultured cortical astrocytes were prepared from 1-3-day old male and female rat pups separately and grown to confluency in steroid-free medium. Male and female rat pups were distinguished by a larger genital papilla and longer ano-genital distance in male vs. female pups. Sex was confirmed by inspecting internal organs and gonads after laporatomy, e.g. uterine horns in females and ductus deferens in males, and by multiplex polymerase chain reaction (PCR) using male-specific marker SRY (sex determination region on the Y chromosome, responsible for testes formation) and the universal marker myogenin (Myog), which is expressed in both males and females. At day 14 in vitro (div), cultures were homogenized for protein and mRNA isolation. The protein levels of three antioxidant enzymes: glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT), were determined by Western blotting in male and female astrocytes. Furthermore, GPx mRNA level was determined by RT-PCR, and GPx activity was measured in male and female astrocytes using a glutathione peroxidase activity assay kit measures GPx activity indirectly by a coupled reaction with glutathione reductase. Results: The protein levels of SOD and CAT were not different between male and female astrocytes. However, the level of GPx protein was 3-fold higher in female compared to male astrocytes (3±0.6 fold, n=4, p",
author = "Mingyue Liu and Nabil Alkayed and Esteban Oyarzabal and Hurn, {Patricia D.}",
year = "2007",
month = "11",
day = "13",
language = "English (US)",
volume = "27",
journal = "Journal of Cerebral Blood Flow and Metabolism",
issn = "0271-678X",
publisher = "Nature Publishing Group",
number = "SUPPL. 1",

}

TY - JOUR

T1 - Sex-specific anti-oxidant capacities in astrocytes

AU - Liu, Mingyue

AU - Alkayed, Nabil

AU - Oyarzabal, Esteban

AU - Hurn, Patricia D.

PY - 2007/11/13

Y1 - 2007/11/13

N2 - Introduction: Neuronal cell death after exposure to various cytotoxins is sex-specific; male cells being more sensitive to nitrosative stress and excitotoxity than female neurons (1). We previously demonstrated that astrocytes cultured from female brain (XX) are less susceptible to cell death induced by oxygen-glucose deprivation (OGD) and hydrogen peroxide (H2O2) than male (XY) astrocytes (2). In the current study, we tested the hypothesis that male and female astrocytes respond differently to oxidative stress, in part due to differences in antioxidant capacity between male and female astrocytes. Methods: Primary cultured cortical astrocytes were prepared from 1-3-day old male and female rat pups separately and grown to confluency in steroid-free medium. Male and female rat pups were distinguished by a larger genital papilla and longer ano-genital distance in male vs. female pups. Sex was confirmed by inspecting internal organs and gonads after laporatomy, e.g. uterine horns in females and ductus deferens in males, and by multiplex polymerase chain reaction (PCR) using male-specific marker SRY (sex determination region on the Y chromosome, responsible for testes formation) and the universal marker myogenin (Myog), which is expressed in both males and females. At day 14 in vitro (div), cultures were homogenized for protein and mRNA isolation. The protein levels of three antioxidant enzymes: glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT), were determined by Western blotting in male and female astrocytes. Furthermore, GPx mRNA level was determined by RT-PCR, and GPx activity was measured in male and female astrocytes using a glutathione peroxidase activity assay kit measures GPx activity indirectly by a coupled reaction with glutathione reductase. Results: The protein levels of SOD and CAT were not different between male and female astrocytes. However, the level of GPx protein was 3-fold higher in female compared to male astrocytes (3±0.6 fold, n=4, p

AB - Introduction: Neuronal cell death after exposure to various cytotoxins is sex-specific; male cells being more sensitive to nitrosative stress and excitotoxity than female neurons (1). We previously demonstrated that astrocytes cultured from female brain (XX) are less susceptible to cell death induced by oxygen-glucose deprivation (OGD) and hydrogen peroxide (H2O2) than male (XY) astrocytes (2). In the current study, we tested the hypothesis that male and female astrocytes respond differently to oxidative stress, in part due to differences in antioxidant capacity between male and female astrocytes. Methods: Primary cultured cortical astrocytes were prepared from 1-3-day old male and female rat pups separately and grown to confluency in steroid-free medium. Male and female rat pups were distinguished by a larger genital papilla and longer ano-genital distance in male vs. female pups. Sex was confirmed by inspecting internal organs and gonads after laporatomy, e.g. uterine horns in females and ductus deferens in males, and by multiplex polymerase chain reaction (PCR) using male-specific marker SRY (sex determination region on the Y chromosome, responsible for testes formation) and the universal marker myogenin (Myog), which is expressed in both males and females. At day 14 in vitro (div), cultures were homogenized for protein and mRNA isolation. The protein levels of three antioxidant enzymes: glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT), were determined by Western blotting in male and female astrocytes. Furthermore, GPx mRNA level was determined by RT-PCR, and GPx activity was measured in male and female astrocytes using a glutathione peroxidase activity assay kit measures GPx activity indirectly by a coupled reaction with glutathione reductase. Results: The protein levels of SOD and CAT were not different between male and female astrocytes. However, the level of GPx protein was 3-fold higher in female compared to male astrocytes (3±0.6 fold, n=4, p

UR - http://www.scopus.com/inward/record.url?scp=36348969945&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=36348969945&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:36348969945

VL - 27

JO - Journal of Cerebral Blood Flow and Metabolism

JF - Journal of Cerebral Blood Flow and Metabolism

SN - 0271-678X

IS - SUPPL. 1

ER -