Selenite-induced epithelial damage and cortical cataract

R. S. Anderson, T. R. Shearer, C. K. Claycomb

Research output: Contribution to journalArticlepeer-review

23 Scopus citations


The purposes of these experiments were 1) to measure microscopic changes in the epithelium associated with selenite cataract, and 2) to describe the formation and subsequent clearing of selenite cortical cataract. Fourteen-day old suckling rat pups received a single subcutaneous injection of an overdose of sodium selenite at 2.25 mg Se/kg b.w. Development of cortical cataract was observed by biomicroscopy, and changes in epithelium were studied by light microscopy of flat-mounted lens epithelia. Selenite administration caused cortical cataract 15-30 days after injection in addition to previously characterized nuclear cataract. The cortical cataract progressed through equatorial vacuolization, opacity, and finally clearing of the cataract. Mitosis was suppressed and karyorrhexis was observed in the germinative zone of the epithelium 5 hours after selenite injection. Pathological disorganization of the epithelium followed. Changes included vacuolization, loss of meridional rows, and defective fiber formation. Restoration of epithelial morphology was associated with clearing of cortical opacity. Epithelial damage at 5 hours was the earliest change yet recorded for selenite cataract, and these data are consistent with our working hypothesis that the initial site of attack of selenium in both cortical and nuclear cataract is the lens epithelium.

Original languageEnglish (US)
Pages (from-to)53-61
Number of pages9
JournalCurrent Eye Research
Issue number1
StatePublished - 1986
Externally publishedYes

ASJC Scopus subject areas

  • Ophthalmology
  • Sensory Systems
  • Cellular and Molecular Neuroscience


Dive into the research topics of 'Selenite-induced epithelial damage and cortical cataract'. Together they form a unique fingerprint.

Cite this