Abstract
We targeted 266 CAG repeats (a number that causes infantile-onset disease) into the mouse Sca7 locus to generate an authentic model of spinocerebellar ataxia type 7 (SCA7). These mice reproduced features of infantile SCA7 (ataxia, visual impairments, and premature death) and showed impaired short-term synaptic potentiation; downregulation of photoreceptor-specific genes, despite apparently normal CRX activity, led to shortening of photoreceptor outer segments. Wild-type ataxin-7 was barely detectable, as was mutant ataxin-7 in young animals; with increasing age, however, ataxin-7 staining became more pronounced. Neurons that appeared most vulnerable had relatively high levels of mutant ataxin-7; it is interesting, however, that marked dysfunction occurred in these neurons weeks prior to the appearance of nuclear inclusions. These data demonstrate that glutamine expansion stabilizes mutant ataxin-7, provide an explanation for selective neuronal vulnerability, and show that mutant ataxin-7 impairs posttetanic potentiation (PTP).
Original language | English (US) |
---|---|
Pages (from-to) | 383-401 |
Number of pages | 19 |
Journal | Neuron |
Volume | 37 |
Issue number | 3 |
DOIs | |
State | Published - Feb 6 2003 |
Externally published | Yes |
ASJC Scopus subject areas
- Neuroscience(all)