Safety and Efficacy of OXB-202, a Genetically Engineered Tissue Therapy for the Prevention of Rejection in High-Risk Corneal Transplant Patients

Naghmeh Fouladi, Maria Parker, Vicky Kennedy, Katie Binley, Laura McCloskey, Julie Loader, Michelle Kelleher, Kyriacos A. Mitrophanous, J. Timothy Stout, Scott Ellis

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

Due to both the avascularity of the cornea and the relatively immune-privileged status of the eye, corneal transplantation is one of the most successful clinical transplant procedures. However, in high-risk patients, which account for >20% of the 180,000 transplants carried out worldwide each year, the rejection rate is high due to vascularization of the recipient cornea. The main reason for graft failure is irreversible immunological rejection, and it is therefore unsurprising that neovascularization (NV; both pre and post grafting) is a significant risk factor for subsequent graft failure. NV is thus an attractive target to prevent corneal graft rejection. OXB-202 (previously known as EncorStat ® ) is a donor cornea modified prior to transplant by ex vivo genetic modification with genes encoding secretable forms of the angiostatic human proteins, endostatin and angiostatin. This is achieved using a lentiviral vector derived from the equine infectious anemia virus called pONYK1EiA, which subsequently prevents rejection by suppressing NV. Previously, it has been shown that rabbit donor corneas treated with pONYK1EiA substantially suppress corneal NV, opacity, and subsequent rejection in an aggressive rabbit model of cornea graft rejection. Here, efficacy data are presented in a second rabbit model, which more closely mirrors the clinical setting for high-risk corneal transplant patients, and safety data from a 3-month good laboratory practice toxicology and biodistribution study of pONYK1EiA-modified rabbit corneas in a rabbit corneal transplant model. It is shown that pONYK1EiA-modified rabbit corneas (OXB-202) significantly reduce corneal NV and the rate of corneal rejection in a dose-dependent fashion, and are tolerated with no adverse toxicological findings or significant biodistribution up to 13 weeks post surgery in these rabbit studies. In conclusion, angiogenesis is a valid target to prevent corneal graft rejection in a high-risk setting, and transplanted genetically modified corneas are safe and well-tolerated in an animal model. These data support the evaluation of OXB-202 in a first-in-human trial.

Original languageEnglish (US)
Pages (from-to)687-698
Number of pages12
JournalHuman Gene Therapy
Volume29
Issue number6
DOIs
StatePublished - Jun 2018

Keywords

  • keratoplasty, corneal rejection, genetic modification, gene therapy, viral vectors, transplant

ASJC Scopus subject areas

  • Molecular Medicine
  • Molecular Biology
  • Genetics

Fingerprint

Dive into the research topics of 'Safety and Efficacy of OXB-202, a Genetically Engineered Tissue Therapy for the Prevention of Rejection in High-Risk Corneal Transplant Patients'. Together they form a unique fingerprint.

Cite this