Role of protein-tyrosine phosphatase SHP2 in focal adhesion kinase down-regulation during neutrophil cathepsin G-induced cardiomyocytes anoikis

Khadija Rafiq, Mikhail A. Kolpakov, Malika Abdelfettah, Daniel N. Streblow, Aviv Hassid, Louis J. Dell'Italia, Abdelkarim Sabri

Research output: Contribution to journalArticlepeer-review

36 Scopus citations


Inflammatory cells and their proteases contribute to tissue reparation at site of inflammation. Although beneficial at early stages, excessive inflammatory reaction leads to cell death and tissue damage. Cathepsin G (Cat.G), a neutrophil-derived serine protease, has been shown to induce neonatal rat cardiomyocyte detachment and apoptosis by anoikis through caspase-3 dependent pathway. However the early mechanisms that trigger Cat.G-induced caspase-3 activation are not known. This study identifies focal adhesion kinase (FAK) tyrosine dephosphorylation as an early mechanism that regulates Cat.G-induced anoikis in cardiomyocytes. Both FAK tyrosine phosphorylation at Tyr-397 and kinase activity decrease rapidly upon Cat.G treatment and was associated with a decrease of FAK association with adapter and cytoskeletal proteins, p130Cas and paxillin, respectively. FAK-decreased tyrosine phosphorylation is required for Cat.G-induced myocyte anoikis as concurrent expression of phosphorylation-deficient FAK mutated at Tyr-397 or pretreatment with a protein-tyrosine phosphatase (PTP) inhibitor, pervanadate, blocks Cat.G-induced FAK tyrosine dephosphorylation, caspase-3 activation and DNA fragmentation. Analysis of PTPs activation shows that Cat.G treatment induces an increase of SHP2 and PTEN phosphorylation; however, only SHP2 forms a complex with FAK in response to Cat.G. Expression of dominant negative SHP2 mutant markedly attenuates FAK tyrosine dephosphorylation induced by Cat.G and protects myocytes to undergo apoptosis. In contrast, increased SHP2 expression exacerbates Cat.G-induced FAK tyrosine dephosphorylation and myocyte apoptosis. Taken together, these results show that Cat.G induces SHP2 activation that leads to FAK tyrosine dephosphorylation and promotes cardiomyocyte anoikis.

Original languageEnglish (US)
Pages (from-to)19781-19792
Number of pages12
JournalJournal of Biological Chemistry
Issue number28
StatePublished - Jul 14 2006

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology


Dive into the research topics of 'Role of protein-tyrosine phosphatase SHP<sub>2</sub> in focal adhesion kinase down-regulation during neutrophil cathepsin G-induced cardiomyocytes anoikis'. Together they form a unique fingerprint.

Cite this