Role of anionic phospholipids in the adaptation of Bacillus subtilis to high salinity

Claudia S. López, Alejandro F. Alice, Horacio Heras, Emilio A. Rivas, Carmen Sánchez-Rivas

Research output: Contribution to journalArticlepeer-review

87 Scopus citations

Abstract

The importance of the content of anionic phospholipids [cardiolipin (CL) and phosphatidylglycerol (PG)] in the osmotic adaptation and in the membrane structure of Bacillus subtilis cultures was investigated. Insertion mutations in the three putative cardiolipin synthase genes (ywiE, ywnE and ywjE) were obtained. Only the ywnE mutation resulted in a complete deficiency in cardiolipin and thus corresponds to a true clsA gene. The osmotolerance of a clsA mutant was impaired: although at NaCl concentrations lower than 1.2 M the growth curves were similar to those of its wild-type control, at 1 .5 M NaCl (LBN medium) the lag period increased and the maximal optical density reached was lower. The membrane of the clsA mutant strain showed an increased PG content, at both exponential and stationary phase, but no trace of CL in either LB or LBN medium. As well as the deficiency in CL synthesis, the clsA mutant showed other differences in lipid and fatty acids content compared to the wild-type, suggesting a cross-regulation in membrane lipid pathways, crucial for the maintenance of membrane functionality and integrity. The biophysical characteristics of membranes and large unilamellar vesicles from the wild-type and clsA mutant strains were studied by Laurdan's steady-state fluorescence spectroscopy. At physiological temperature, the clsA mutant showed a decreased lateral lipid packing in the protein-free vesicles and isolated membranes compared with the wild-type strain. Interestingly, the lateral lipid packing of the membranes of both the wild-type and clsA mutant strains increased when they were grown in LBN. In a conditional IPTG-controlled pgsA mutant, unable to synthesize PG and CL in the absence of IPTG, the osmoresistance of the cultures correlated with their content of anionic phospholipids. The transcriptional activity of the clsA and pgsA genes was similar and increased twofold upon entry to stationary phase or under osmotic upshift. Overall, these results support the involvement of the anionic phospholipids in the growth of B. subtilis in media containing elevated NaCl concentrations.

Original languageEnglish (US)
Pages (from-to)605-616
Number of pages12
JournalMicrobiology
Volume152
Issue number3
DOIs
StatePublished - Mar 2006

ASJC Scopus subject areas

  • Microbiology

Fingerprint

Dive into the research topics of 'Role of anionic phospholipids in the adaptation of Bacillus subtilis to high salinity'. Together they form a unique fingerprint.

Cite this