Reliability assessment of a novel cervical spine deformity classification system

Christopher P. Ames, Justin S. Smith, Robert Eastlack, Donald J. Blaskiewicz, Christopher I. Shaffrey, Frank Schwab, Shay Bess, Han Jo Kim, Gregory M. Mundis, Eric Klineberg, Munish Gupta, Michael O'Brien, Richard Hostin, Justin K. Scheer, Themistocles S. Protopsaltis, Kai Ming G Fu, Robert Hart, Todd J. Albert, K. Daniel Riew, Michael G. FehlingsVedat Deviren, Virginie Lafage

Research output: Contribution to journalArticle

77 Scopus citations

Abstract

Object Despite the complexity of cervical spine deformity (CSD) and its significant impact on patient quality of life, there exists no comprehensive classification system. The objective of this study was to develop a novel classification system based on a modified Delphi approach and to characterize the intra-and interobserver reliability of this classification. Methods?Based on an extensive literature review and a modified Delphi approach with an expert panel, a CSD classification system was generated. The classification system included a deformity descriptor and 5 modifiers that incorporated sagittal, regional, and global spinopelvic alignment and neurological status. The descriptors included: C, CT, and T for primary cervical kyphotic deformities with an apex in the cervical spine, cervicothoracic junction, or thoracic spine, respectively; S for primary coronal deformity with a coronal Cobb angle ? 15; and CVJ for primary craniovertebral junction deformity. The modifiers included C2-7 sagittal vertical axis (SVA), horizontal gaze (chin-brow to vertical angle [CBVA]), T1 slope (TS) minus C2-7 lordosis (TS-CL), myelopathy (modified Japanese Orthopaedic Association [mJOA] scale score), and the Scoliosis Research Society (SRS)-Schwab classification for thoracolumbar deformity. Application of the classification system requires the following: 1) full-length standing posteroanterior (PA) and lateral spine radiographs that include the cervical spine and femoral heads; 2) standing PA and lateral cervical spine radiographs; 3) completed and scored mJOA questionnaire; and 4) a clinical photograph or radiograph that includes the skull for measurement of the CBVA. A series of 10 CSD cases, broadly representative of the classification system, were selected and sufficient radiographic and clinical history to enable classification were assembled. A panel of spinal deformity surgeons was queried to classify each case twice, with a minimum of 1 intervening week. Inter-and intrarater reliability measures were based on calculations of Fleiss k coefficient values. Results?Twenty spinal deformity surgeons participated in this study. Interrater reliability (Fleiss k coefficients) for the deformity descriptor rounds 1 and 2 were 0.489 and 0.280, respectively, and mean intrarater reliability was 0.584. For the modifiers, including the SRS-Schwab components, the interrater (round 1/round 2) and intrarater reliabilities (Fleiss k coefficients) were: C2-7 SVA (0.338/0.412, 0.584), horizontal gaze (0.779/0.430, 0.768), TS-CL (0.721/0.567, 0.720), myelopathy (0.602/0.477, 0.746), SRS-Schwab curve type (0.590/0.433, 0.564), pelvic incidence-lumbar lordosis (0.554/0.386, 0.826), pelvic tilt (0.714/0.627, 0.633), and C7-S1 SVA (0.071/0.064, 0.233), respectively. The parameter with the poorest reliability was the C7-S1 SVA, which may have resulted from differences in interpretation of positive and negative measurements. Conclusions?The proposed classification provides a mechanism to assess CSD within the framework of global spinopelvic malalignment and clinically relevant parameters. The intra-and interobserver reliabilities suggest moderate agreement and serve as the basis for subsequent improvement and study of the proposed classification.

Original languageEnglish (US)
Pages (from-to)673-683
Number of pages11
JournalJournal of Neurosurgery: Spine
Volume23
Issue number6
DOIs
StatePublished - Dec 1 2015

    Fingerprint

Keywords

  • Cervical spine deformity
  • Classification
  • Horizontal gaze
  • Kyphosis
  • Myelopathy
  • Sagittal alignment
  • Validation

ASJC Scopus subject areas

  • Clinical Neurology
  • Surgery
  • Neurology

Cite this

Ames, C. P., Smith, J. S., Eastlack, R., Blaskiewicz, D. J., Shaffrey, C. I., Schwab, F., Bess, S., Kim, H. J., Mundis, G. M., Klineberg, E., Gupta, M., O'Brien, M., Hostin, R., Scheer, J. K., Protopsaltis, T. S., Fu, K. M. G., Hart, R., Albert, T. J., Riew, K. D., ... Lafage, V. (2015). Reliability assessment of a novel cervical spine deformity classification system. Journal of Neurosurgery: Spine, 23(6), 673-683. https://doi.org/10.3171/2014.12.SPINE14780