Regulatory mechanisms of AMPA receptors in synaptic plasticity

Victor A. Derkach, Michael C. Oh, Eric S. Guire, Thomas Soderling

    Research output: Contribution to journalArticle

    456 Scopus citations

    Abstract

    Activity-dependent changes in the strength of excitatory synapses are a cellular mechanism for the plasticity of neuronal networks that is widely recognized to underlie cognitive functions such as learning and memory. AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid)-type glutamate receptors (AMPARs) are the main transducers of rapid excitatory transmission in the mammalian CNS, and recent discoveries indicate that the mechanisms which regulate AMPARs are more complex than previously thought. This review focuses on recent evidence that alterations to AMPAR functional properties are coupled to their trafficking, cytoskeletal dynamics and local protein synthesis. These relationships offer new insights into the regulation of AMPARs and synaptic strength by cellular signalling.

    Original languageEnglish (US)
    Pages (from-to)101-113
    Number of pages13
    JournalNature Reviews Neuroscience
    Volume8
    Issue number2
    DOIs
    Publication statusPublished - Feb 2007

      Fingerprint

    ASJC Scopus subject areas

    • Neuroscience(all)
    • Cell Biology

    Cite this

    Derkach, V. A., Oh, M. C., Guire, E. S., & Soderling, T. (2007). Regulatory mechanisms of AMPA receptors in synaptic plasticity. Nature Reviews Neuroscience, 8(2), 101-113. https://doi.org/10.1038/nrn2055