Regulation of muscarinic acetylcholine receptor mRNA expression by activation of homologous and heterologous receptors

Beth Habecker, Neil M. Nathanson

Research output: Contribution to journalArticle

50 Citations (Scopus)

Abstract

Muscarinic acetylcholine receptors (mAChR) in the embryonic chicken heart undergo agonist-induced internalization and a subsequent decrease in receptor number (downregulation). Cloning studies have identified two subtypes of mAChR expressed in the embryonic chicken heart, the cm2 and cm4 receptors. We report here that persistent activation of the mAChR in cultured chicken heart cells with the cholinergic agonist carbachol causes significant decreases in the levels of both cm2 and cm4 mRNA, as measured by solution hybridization analyses. The half-lives of the cm2 and cm4 mRNAs are not altered by agonist treatment, indicating that agonist most likely regulates mRNA levels by regulating the rate of gene transcription. Activation of mAChR in chicken heart causes both inhibition of adenylate cyclase activity and stimulation of phospholipase C activity. To test whether changes in the levels of intracellular second messengers were involved in the changes in mAChR mRNAs observed following agonist exposure, we determined the effects of incubation with agonists for the A, adenosine receptors (which inhibit adenylate cyclase in chicken heart) and angiotensin II receptors (which stimulate phospholipase C) on mAChR receptor number and mRNA levels. Activation of these pathways together through heterologous receptors resulted in decreased mAChR number and mRNA levels, although these changes were not as large as those seen with direct activation of the mAChR. These results suggest that regulation of adenylate cyclase and phospholipase C activities may be involved in the regulation of mAChR gene expression.

Original languageEnglish (US)
Pages (from-to)5035-5038
Number of pages4
JournalProceedings of the National Academy of Sciences of the United States of America
Volume89
Issue number11
StatePublished - 1992
Externally publishedYes

Fingerprint

Muscarinic Receptors
Messenger RNA
Chickens
Type C Phospholipases
Adenylyl Cyclases
Purinergic P1 Receptor Agonists
Cholinergic Agonists
Angiotensin Receptors
Carbachol
Second Messenger Systems
Organism Cloning
Down-Regulation
Gene Expression

Keywords

  • Chicken heart
  • Downregulation
  • Second messengers
  • Solution hybridization

ASJC Scopus subject areas

  • Genetics
  • General

Cite this

@article{5ff5e28121c34595ad666e9c9aa35ef5,
title = "Regulation of muscarinic acetylcholine receptor mRNA expression by activation of homologous and heterologous receptors",
abstract = "Muscarinic acetylcholine receptors (mAChR) in the embryonic chicken heart undergo agonist-induced internalization and a subsequent decrease in receptor number (downregulation). Cloning studies have identified two subtypes of mAChR expressed in the embryonic chicken heart, the cm2 and cm4 receptors. We report here that persistent activation of the mAChR in cultured chicken heart cells with the cholinergic agonist carbachol causes significant decreases in the levels of both cm2 and cm4 mRNA, as measured by solution hybridization analyses. The half-lives of the cm2 and cm4 mRNAs are not altered by agonist treatment, indicating that agonist most likely regulates mRNA levels by regulating the rate of gene transcription. Activation of mAChR in chicken heart causes both inhibition of adenylate cyclase activity and stimulation of phospholipase C activity. To test whether changes in the levels of intracellular second messengers were involved in the changes in mAChR mRNAs observed following agonist exposure, we determined the effects of incubation with agonists for the A, adenosine receptors (which inhibit adenylate cyclase in chicken heart) and angiotensin II receptors (which stimulate phospholipase C) on mAChR receptor number and mRNA levels. Activation of these pathways together through heterologous receptors resulted in decreased mAChR number and mRNA levels, although these changes were not as large as those seen with direct activation of the mAChR. These results suggest that regulation of adenylate cyclase and phospholipase C activities may be involved in the regulation of mAChR gene expression.",
keywords = "Chicken heart, Downregulation, Second messengers, Solution hybridization",
author = "Beth Habecker and Nathanson, {Neil M.}",
year = "1992",
language = "English (US)",
volume = "89",
pages = "5035--5038",
journal = "Proceedings of the National Academy of Sciences of the United States of America",
issn = "0027-8424",
number = "11",

}

TY - JOUR

T1 - Regulation of muscarinic acetylcholine receptor mRNA expression by activation of homologous and heterologous receptors

AU - Habecker, Beth

AU - Nathanson, Neil M.

PY - 1992

Y1 - 1992

N2 - Muscarinic acetylcholine receptors (mAChR) in the embryonic chicken heart undergo agonist-induced internalization and a subsequent decrease in receptor number (downregulation). Cloning studies have identified two subtypes of mAChR expressed in the embryonic chicken heart, the cm2 and cm4 receptors. We report here that persistent activation of the mAChR in cultured chicken heart cells with the cholinergic agonist carbachol causes significant decreases in the levels of both cm2 and cm4 mRNA, as measured by solution hybridization analyses. The half-lives of the cm2 and cm4 mRNAs are not altered by agonist treatment, indicating that agonist most likely regulates mRNA levels by regulating the rate of gene transcription. Activation of mAChR in chicken heart causes both inhibition of adenylate cyclase activity and stimulation of phospholipase C activity. To test whether changes in the levels of intracellular second messengers were involved in the changes in mAChR mRNAs observed following agonist exposure, we determined the effects of incubation with agonists for the A, adenosine receptors (which inhibit adenylate cyclase in chicken heart) and angiotensin II receptors (which stimulate phospholipase C) on mAChR receptor number and mRNA levels. Activation of these pathways together through heterologous receptors resulted in decreased mAChR number and mRNA levels, although these changes were not as large as those seen with direct activation of the mAChR. These results suggest that regulation of adenylate cyclase and phospholipase C activities may be involved in the regulation of mAChR gene expression.

AB - Muscarinic acetylcholine receptors (mAChR) in the embryonic chicken heart undergo agonist-induced internalization and a subsequent decrease in receptor number (downregulation). Cloning studies have identified two subtypes of mAChR expressed in the embryonic chicken heart, the cm2 and cm4 receptors. We report here that persistent activation of the mAChR in cultured chicken heart cells with the cholinergic agonist carbachol causes significant decreases in the levels of both cm2 and cm4 mRNA, as measured by solution hybridization analyses. The half-lives of the cm2 and cm4 mRNAs are not altered by agonist treatment, indicating that agonist most likely regulates mRNA levels by regulating the rate of gene transcription. Activation of mAChR in chicken heart causes both inhibition of adenylate cyclase activity and stimulation of phospholipase C activity. To test whether changes in the levels of intracellular second messengers were involved in the changes in mAChR mRNAs observed following agonist exposure, we determined the effects of incubation with agonists for the A, adenosine receptors (which inhibit adenylate cyclase in chicken heart) and angiotensin II receptors (which stimulate phospholipase C) on mAChR receptor number and mRNA levels. Activation of these pathways together through heterologous receptors resulted in decreased mAChR number and mRNA levels, although these changes were not as large as those seen with direct activation of the mAChR. These results suggest that regulation of adenylate cyclase and phospholipase C activities may be involved in the regulation of mAChR gene expression.

KW - Chicken heart

KW - Downregulation

KW - Second messengers

KW - Solution hybridization

UR - http://www.scopus.com/inward/record.url?scp=0026735236&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0026735236&partnerID=8YFLogxK

M3 - Article

VL - 89

SP - 5035

EP - 5038

JO - Proceedings of the National Academy of Sciences of the United States of America

JF - Proceedings of the National Academy of Sciences of the United States of America

SN - 0027-8424

IS - 11

ER -