Regulation of Ca2+/calmodulin-dependent cyclic nucleotide phosphodiesterase by the autophosphorylated form of Ca2+/calmodulin-dependent protein kinase II

Y. Hashimoto, R. K. Sharma, Thomas Soderling

Research output: Contribution to journalArticle

70 Scopus citations

Abstract

The 63-kDa subunit, but not the 60-kDa subunit, of brain calmodulin-dependent cyclic nucleotide phosphodiesterase was phosphorylated in vitro by the autophosphorylated form of Ca2+/calmodulin-dependent protein kinase II. When calmodulin was bound to the phosphodiesterase, 1.33 ± 0.20 mol of phosphate was incorporated per mol of the 63-kDa subunit within 5 min with no significant effect on enzyme activity. Phosphorylation in the presence of low concentrations of calmodulin resulted in a phosphorylation stoichiometry of 2.11 ± 0.21 and increased about 6-fold the concentration of calmodulin necessary for half-maximal activation of the phosphodiesterase. Peptide mapping analyses of complete tryptic digests of the 63-kDa subunit revealed two major (P1, P4) and two minor (P2, P3) 32P-peptides. Calmodulin-binding to the phosphodiesterase almost completely inhibited phosphorylation of P1 and P2 with reduced phosphorylation rates of P3 and P4, suggesting the affinity change of the enzyme for calmodulin may be caused by phosphorylation of P1 and/or P2. When Ca2+/calmodulin-dependent protein kinase II was added without prior autophosphorylation, there was no phosphorylation of the 63-kDa phosphodiesterase subunit or of the kinase itself in the presence of a low concentration of calmodulin, and with excess calmodulin the phosphodiesterase subunit was phosphorylated only at P3 and P4. Thus the 63-kDa subunit of phosphodiesterase has a regulatory phosphorylation site(s) that is phosphorylated by the autophosphorylated form of Ca2+/calmodulin-dependent protein kinase II and blocked by Ca2+/calmodulin binding to the subunit.

Original languageEnglish (US)
Pages (from-to)10884-10887
Number of pages4
JournalJournal of Biological Chemistry
Volume264
Issue number18
Publication statusPublished - 1989
Externally publishedYes

    Fingerprint

ASJC Scopus subject areas

  • Biochemistry

Cite this