Regulated interaction of the Fanconi anemia protein, FANCD2, with chromatin

Rocio Montes De Oca, Paul R. Andreassen, Steven P. Margossian, Richard C. Gregory, Toshiyasu Taniguchi, Xiao Zhe Wang, Scott Houghtaling, Markus Grompe, Alan D. D'Andrea

Research output: Contribution to journalArticle

107 Scopus citations

Abstract

DNA damage activates the monoubiquitination of the Fanconi anemia (FA) protein, FANCD2, resulting in the assembly of FANCD2 nuclear foci. In the current study, we characterize structural features of FANCD2 required for this intranuclear translocation. We have previously identified 2 normal mRNA splice variants of FANCD2, one containing exon 44 sequence at the 3′ end (FANCD2-44) and one containing exon 43 sequence (FANCD2-43). The 2 predicted FANCD2 proteins differ in their carboxy terminal 24 amino acids. In stably transfected FANCD2-/- fibroblasts, FANCD2-44 and FANCD2-43 proteins were monoubiquitinated on K561. Only FANCD2-44 corrected the mitomycin C (MMC) sensitivity of the transfected cells. We find that monoubiquitinated FANCD2-44 was translocated from the soluble nuclear compartment into chromatin. A mutant form of FANCD2-44 (FANCD2-K561R) was not monoubiquitinated and failed to bind chromatin. A truncated FANCD2 protein (Exon44-T), lacking the carboxy terminal 24 amino acids encoded by exon 44 but retaining K561, and another mutant FANCD2 protein, with a single amino acid substitution at a conserved residue within the C-terminal 24 amino acids (D1428A), were monoubiquitinated. Both mutants were targeted to chromatin but failed to correct MMC sensitivity. Taken together, our results indicate that monoubiquitination of FANCD2 regulates chromatin binding and that D1428 within the carboxy terminal acidic sequence encoded by exon 44 is independently required for functional complementation of FA-D2 cells. We hypothesize that the carboxy terminus of FANCD2-44 plays a critical role in sensing or repairing DNA damage.

Original languageEnglish (US)
Pages (from-to)1003-1009
Number of pages7
JournalBlood
Volume105
Issue number3
DOIs
StatePublished - Feb 1 2005

ASJC Scopus subject areas

  • Biochemistry
  • Immunology
  • Hematology
  • Cell Biology

Fingerprint Dive into the research topics of 'Regulated interaction of the Fanconi anemia protein, FANCD2, with chromatin'. Together they form a unique fingerprint.

  • Cite this

    De Oca, R. M., Andreassen, P. R., Margossian, S. P., Gregory, R. C., Taniguchi, T., Wang, X. Z., Houghtaling, S., Grompe, M., & D'Andrea, A. D. (2005). Regulated interaction of the Fanconi anemia protein, FANCD2, with chromatin. Blood, 105(3), 1003-1009. https://doi.org/10.1182/blood-2003-11-3997