Abstract
Under anoxic conditions, soluble pertechnetate (99TcO 4-) can be reduced to less soluble TcO2· nH2O, but the oxide is highly susceptible to reoxidation. Here we investigate an alternative strategy for remediation of Tc-contaminated groundwater whereby sequestration as Tc sulfide is favored by sulfidic conditions stimulated by nano zerovalent iron (nZVI). nZVI was pre-exposed to increasing concentrations of sulfide in simulated Hanford groundwater for 24 h to mimic the onset of aquifer biotic sulfate reduction. Solid-phase characterizations of the sulfidated nZVI confirmed the formation of nanocrystalline FeS phases, but higher S/Fe ratios (>0.112) did not result in the formation of significantly more FeS. The kinetics of Tc sequestration by these materials showed faster Tc removal rates with increasing S/Fe between 0 and 0.056, but decreasing Tc removal rates with S/Fe > 0.224. The more favorable Tc removal kinetics at low S/Fe could be due to a higher affinity of TcO4- for FeS than iron oxides, and electron microscopy confirmed that the majority of the Tc was associated with FeS phases. The inhibition of Tc removal at high S/Fe appears to have been caused by excess HS-. X-ray absorption spectroscopy revealed that as S/Fe increased, the pathway for Tc(IV) formation shifted from TcO2·nH 2O to Tc sulfide phases. The most substantial change of Tc speciation occurred at low S/Fe, coinciding with the rapid increase in Tc removal rate. This agreement further confirms the importance of FeS in Tc sequestration.
Original language | English (US) |
---|---|
Pages (from-to) | 5302-5310 |
Number of pages | 9 |
Journal | Environmental Science and Technology |
Volume | 47 |
Issue number | 10 |
DOIs | |
State | Published - May 21 2013 |
ASJC Scopus subject areas
- Chemistry(all)
- Environmental Chemistry