Reduced affinity of calcium sensing-receptor heterodimers and reduced mutant homodimer trafficking combine to impair function in a model of familial hypocalciuric hypercalcemia type 1

Xiaohua Wang, James Lundblad, Stephen M. Smith

Research output: Contribution to journalArticlepeer-review

Abstract

Heterozygous loss-of-function mutation of the calcium sensing-receptor (CaSR), causes familial hypocalciuric hypercalcemia type 1 (FHH1), a typically benign condition characterized by mild hypercalcemia. In contrast, homozygous mutation of this dimer-forming G-protein coupled receptor manifests as the lethal neonatal severe hyperparathyroidism (NSHPT). To investigate the mechanisms by which CaSR mutations lead to these distinct disease states, we engineered wild-type (WT) and an exon 5-deficient disease-causing mutation, and transfected expression constructs into human embryonic kidney (HEK) cells. WT protein was mainly membrane-expressed whereas the mutant CaSR protein (mCaSR) was confined to the cytoplasm. Co-expression of WT CaSR directed mCaSR to the cell membrane. In assays of CaSR function, increases in extracellular [Ca2+] ([Ca2+]o) increased intracellular [Ca2+] ([Ca2+]i) in cells expressing WT CaSR while the response was reduced in cells co-expressing mutant and WT receptor. Untransfected cells or those expressing mCaSR alone, showed minimal, equivalent responses to increased [Ca2+]o. Immunoprecipitation experiments confirmed an association between mutant and wild-type CaSR. The affinity of the WT CaSR for calcium was three times greater than that of the heterodimer. The maximal functional response to [Ca]o was dependent on localization of CaSR to the membrane level and independent of homo- or heterodimerizations. In summary, these results suggest that heterodimerization of WT and mCaSR receptors, rescues the trafficking defect of the mutant receptors and also reduces the affinity of the WT-mutant heterodimer for [Ca]o. In contrast, the homozygous mutants do not produce functional receptors on cell membrane. These data indicate how substantial differences between signaling of hetero-and homodimeric mutants may lead to profound differences in the severity of disease in heterozygous and homozygous carriers of these mutations.

Original languageEnglish (US)
Article numbere0266993
JournalPloS one
Volume17
Issue number7 July
DOIs
StatePublished - Jul 2022

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Reduced affinity of calcium sensing-receptor heterodimers and reduced mutant homodimer trafficking combine to impair function in a model of familial hypocalciuric hypercalcemia type 1'. Together they form a unique fingerprint.

Cite this