Recursive partitioning identifies greater than 4 U of packed red blood cells per hour as an improved massive transfusion definition

Alexis Marika Moren, David Hamptom, Brian Diggs, Laszlo Kiraly, Erin E. Fox, John B. Holcomb, Mohammad Hossein Rahbar, Karen J. Brasel, Mitchell Jay Cohen, Eileen M. Bulger, Martin A. Schreiber

Research output: Contribution to journalArticle

10 Scopus citations

Abstract

BACKGROUND Massive transfusion (MT) is classically defined as greater than 10 U of packed red blood cells (PRBCs) in 24 hours. This fails to capture the most severely injured patients. Extending the previous work of Savage and Rahbar, a rolling hourly rate-based definition of MT may more accurately define critically injured patients requiring early, aggressive resuscitation. METHODS The Prospective Observational Multicenter Major Trauma Transfusion (PROMMTT) trial collected data from 10 Level 1 trauma centers. Patients were placed into rate-based transfusion groups by maximal number of PRBCs transfused in any hour within the first 6 hours. A nonparametric analysis using classification trees partitioned data according to mortality at 24 hours using a predictor variable of maximum number PRBC units transfused in an hour. Dichotomous variables significant in previous scores and models as predictors of MT were used to identify critically ill patients: a positive finding on Focused Assessment with Sonography in Trauma (FAST) examination, Glasgow Coma Scale (GCS) score less than 8, heart rate greater than 120 beats/min, systolic blood pressure less than 90 mm Hg, penetrating mechanism of injury, international normalized ratio greater than 1.5, hemoglobin less than 11, and base deficit greater than 5. These critical indicators were then compared among the nodes of the classification tree. Patients omitted included those who did not receive PRBCs (n = 24) and those who did not have all eight critical indicators reported (n = 449). RESULTS In a population of 1,245 patients, the classification tree included 772 patients. Analysis by recursive partitioning showed increased mortality among patients receiving greater than 13 U/h (73.9%, p < 0.01). In those patients receiving less than or equal to 13 U/h, mortality was greater in patients who received more than 4 U/h (16.7% vs. 6.0%, p < 0.01) (Fig. 1). Nodal analysis showed that the median number of critical indicators for each node was 3 (2-4) (≤4 U/h), 4 (3-5) (>4 U/h and ≤13 U/h), and 5 (4-5.5) (>13 U/h). CONCLUSION A rate-based transfusion definition identifies a difference in mortality in patients who receive greater than 4 U/h of PRBCs. Redefining MT to greater than 4 U/h allows early identification of patients with a significant mortality risk who may be missed by the current definition. LEVEL OF EVIDENCE Prognostic/epidemiologic study, level III.

Original languageEnglish (US)
Pages (from-to)920-924
Number of pages5
JournalJournal of Trauma and Acute Care Surgery
Volume79
Issue number6
DOIs
StatePublished - Dec 1 2015

    Fingerprint

Keywords

  • Trauma
  • massive transfusion
  • rate

ASJC Scopus subject areas

  • Surgery
  • Critical Care and Intensive Care Medicine

Cite this