TY - JOUR
T1 - Real-time retinal layer segmentation of OCT volumes with GPU accelerated inferencing using a compressed, low-latency neural network
AU - BORKOVKINA, SVETLANA
AU - CAMINO, ACNER
AU - JANPONGSRI, WORAWEE
AU - SARUNIC, MARINKO V.
AU - JIAN, YIFAN
N1 - Funding Information:
Michael Smith Foundation for Health Research; Natural Sciences and Engineering Research Council of Canada; Canadian Institutes of Health Research; Research to Prevent Blindness; National Eye Institute (P30 EY010572) (R01 EY031331).
Publisher Copyright:
© 2020 Optical Society of America.
PY - 2020/7/1
Y1 - 2020/7/1
N2 - Segmentation of retinal layers in optical coherence tomography (OCT) is an essential step in OCT image analysis for screening, diagnosis, and assessment of retinal disease progression. Real-time segmentation together with high-speed OCT volume acquisition allows rendering of en face OCT of arbitrary retinal layers, which can be used to increase the yield rate of high-quality scans, provide real-time feedback during image-guided surgeries, and compensate aberrations in adaptive optics (AO) OCT without using wavefront sensors. We demonstrate here unprecedented real-time OCT segmentation of eight retinal layer boundaries achieved by 3 levels of optimization: 1) a modified, low complexity, neural network structure, 2) an innovative scheme of neural network compression with TensorRT, and 3) specialized GPU hardware to accelerate computation. Inferencing with the compressed network U-NetRT took 3.5 ms, improving by 21 times the speed of conventional U-Net inference without reducing the accuracy. The latency of the entire pipeline from data acquisition to inferencing was only 41 ms, enabled by parallelized batch processing. The system and method allow real-time updating of en face OCT and OCTA visualizations of arbitrary retinal layers and plexuses in continuous mode scanning. To the best our knowledge, our work is the first demonstration of an ophthalmic imager with embedded artificial intelligence (AI) providing real-time feedback.
AB - Segmentation of retinal layers in optical coherence tomography (OCT) is an essential step in OCT image analysis for screening, diagnosis, and assessment of retinal disease progression. Real-time segmentation together with high-speed OCT volume acquisition allows rendering of en face OCT of arbitrary retinal layers, which can be used to increase the yield rate of high-quality scans, provide real-time feedback during image-guided surgeries, and compensate aberrations in adaptive optics (AO) OCT without using wavefront sensors. We demonstrate here unprecedented real-time OCT segmentation of eight retinal layer boundaries achieved by 3 levels of optimization: 1) a modified, low complexity, neural network structure, 2) an innovative scheme of neural network compression with TensorRT, and 3) specialized GPU hardware to accelerate computation. Inferencing with the compressed network U-NetRT took 3.5 ms, improving by 21 times the speed of conventional U-Net inference without reducing the accuracy. The latency of the entire pipeline from data acquisition to inferencing was only 41 ms, enabled by parallelized batch processing. The system and method allow real-time updating of en face OCT and OCTA visualizations of arbitrary retinal layers and plexuses in continuous mode scanning. To the best our knowledge, our work is the first demonstration of an ophthalmic imager with embedded artificial intelligence (AI) providing real-time feedback.
UR - http://www.scopus.com/inward/record.url?scp=85087965174&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85087965174&partnerID=8YFLogxK
U2 - 10.1364/BOE.395279
DO - 10.1364/BOE.395279
M3 - Article
AN - SCOPUS:85087965174
SN - 2156-7085
VL - 11
SP - 3968
EP - 3984
JO - Biomedical Optics Express
JF - Biomedical Optics Express
IS - 7
ER -