Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration

Jia Yali, Steven Bailey, David Wilson, Ou Tan, Michael Klein, Christina Flaxel, Benjamin Potsaid, Jonathan J. Liu, Chen D. Lu, Martin F. Kraus, James G. Fujimoto, David Huang

Research output: Contribution to journalArticle

425 Citations (Scopus)

Abstract

Purpose To detect and quantify choroidal neovascularization (CNV) in patients with age-related macular degeneration (AMD) using optical coherence tomography (OCT) angiography. Design Observational, cross-sectional study. Participants A total of 5 normal subjects and 5 subjects with neovascular AMD were included. Methods A total of 5 eyes with neovascular AMD and 5 normal age-matched controls were scanned by a high-speed (100 000 A-scans/seconds) 1050-nm wavelength swept-source OCT. The macular angiography scan covered a 3×3-mm area and comprised 200×200×8 A-scans acquired in 3.5 seconds. Flow was detected using the split-spectrum amplitude-decorrelation angiography (SSADA) algorithm. Motion artifacts were removed by 3-dimensional (3D) orthogonal registration and merging of 4 scans. The 3D angiography was segmented into 3 layers: inner retina (to show retinal vasculature), outer retina (to identify CNV), and choroid. En face maximum projection was used to obtain 2-dimensional angiograms from the 3 layers. The CNV area and flow index were computed from the en face OCT angiogram of the outer retinal layer. Flow (decorrelation) and structural data were combined in composite color angiograms for both en face and cross-sectional views. Main Outcome Measures The CNV angiogram, CNV area, and CNV flow index. Results En face OCT angiograms of CNV showed sizes and locations that were confirmed by fluorescein angiography (FA). Optical coherence tomography angiography provided more distinct vascular network patterns that were less obscured by subretinal hemorrhage. The en face angiograms also showed areas of reduced choroidal flow adjacent to the CNV in all cases and significantly reduced retinal flow in 1 case. Cross-sectional angiograms were used to visualize CNV location relative to the retinal pigment epithelium and Bruch's layer and classify type I and type II CNV. A feeder vessel could be identified in 1 case. Higher flow indexes were associated with larger CNV and type II CNV. Conclusions Optical coherence tomography angiography provides depth-resolved information and detailed images of CNV in neovascular AMD. Quantitative information regarding CNV flow and area can be obtained. Further studies are needed to assess the role of quantitative OCT angiography in the evaluation and treatment of neovascular AMD.

Original languageEnglish (US)
Pages (from-to)1435-1444
Number of pages10
JournalOphthalmology
Volume121
Issue number7
DOIs
StatePublished - 2014

Fingerprint

Choroidal Neovascularization
Optical Coherence Tomography
Macular Degeneration
Angiography
Retina
Choroid
Retinal Pigment Epithelium
Fluorescein Angiography
Artifacts
Blood Vessels

ASJC Scopus subject areas

  • Ophthalmology

Cite this

Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration. / Yali, Jia; Bailey, Steven; Wilson, David; Tan, Ou; Klein, Michael; Flaxel, Christina; Potsaid, Benjamin; Liu, Jonathan J.; Lu, Chen D.; Kraus, Martin F.; Fujimoto, James G.; Huang, David.

In: Ophthalmology, Vol. 121, No. 7, 2014, p. 1435-1444.

Research output: Contribution to journalArticle

@article{192fd676f5c44ce48d2cfafcb0197dd3,
title = "Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration",
abstract = "Purpose To detect and quantify choroidal neovascularization (CNV) in patients with age-related macular degeneration (AMD) using optical coherence tomography (OCT) angiography. Design Observational, cross-sectional study. Participants A total of 5 normal subjects and 5 subjects with neovascular AMD were included. Methods A total of 5 eyes with neovascular AMD and 5 normal age-matched controls were scanned by a high-speed (100 000 A-scans/seconds) 1050-nm wavelength swept-source OCT. The macular angiography scan covered a 3×3-mm area and comprised 200×200×8 A-scans acquired in 3.5 seconds. Flow was detected using the split-spectrum amplitude-decorrelation angiography (SSADA) algorithm. Motion artifacts were removed by 3-dimensional (3D) orthogonal registration and merging of 4 scans. The 3D angiography was segmented into 3 layers: inner retina (to show retinal vasculature), outer retina (to identify CNV), and choroid. En face maximum projection was used to obtain 2-dimensional angiograms from the 3 layers. The CNV area and flow index were computed from the en face OCT angiogram of the outer retinal layer. Flow (decorrelation) and structural data were combined in composite color angiograms for both en face and cross-sectional views. Main Outcome Measures The CNV angiogram, CNV area, and CNV flow index. Results En face OCT angiograms of CNV showed sizes and locations that were confirmed by fluorescein angiography (FA). Optical coherence tomography angiography provided more distinct vascular network patterns that were less obscured by subretinal hemorrhage. The en face angiograms also showed areas of reduced choroidal flow adjacent to the CNV in all cases and significantly reduced retinal flow in 1 case. Cross-sectional angiograms were used to visualize CNV location relative to the retinal pigment epithelium and Bruch's layer and classify type I and type II CNV. A feeder vessel could be identified in 1 case. Higher flow indexes were associated with larger CNV and type II CNV. Conclusions Optical coherence tomography angiography provides depth-resolved information and detailed images of CNV in neovascular AMD. Quantitative information regarding CNV flow and area can be obtained. Further studies are needed to assess the role of quantitative OCT angiography in the evaluation and treatment of neovascular AMD.",
author = "Jia Yali and Steven Bailey and David Wilson and Ou Tan and Michael Klein and Christina Flaxel and Benjamin Potsaid and Liu, {Jonathan J.} and Lu, {Chen D.} and Kraus, {Martin F.} and Fujimoto, {James G.} and David Huang",
year = "2014",
doi = "10.1016/j.ophtha.2014.01.034",
language = "English (US)",
volume = "121",
pages = "1435--1444",
journal = "Ophthalmology",
issn = "0161-6420",
publisher = "Elsevier Inc.",
number = "7",

}

TY - JOUR

T1 - Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration

AU - Yali, Jia

AU - Bailey, Steven

AU - Wilson, David

AU - Tan, Ou

AU - Klein, Michael

AU - Flaxel, Christina

AU - Potsaid, Benjamin

AU - Liu, Jonathan J.

AU - Lu, Chen D.

AU - Kraus, Martin F.

AU - Fujimoto, James G.

AU - Huang, David

PY - 2014

Y1 - 2014

N2 - Purpose To detect and quantify choroidal neovascularization (CNV) in patients with age-related macular degeneration (AMD) using optical coherence tomography (OCT) angiography. Design Observational, cross-sectional study. Participants A total of 5 normal subjects and 5 subjects with neovascular AMD were included. Methods A total of 5 eyes with neovascular AMD and 5 normal age-matched controls were scanned by a high-speed (100 000 A-scans/seconds) 1050-nm wavelength swept-source OCT. The macular angiography scan covered a 3×3-mm area and comprised 200×200×8 A-scans acquired in 3.5 seconds. Flow was detected using the split-spectrum amplitude-decorrelation angiography (SSADA) algorithm. Motion artifacts were removed by 3-dimensional (3D) orthogonal registration and merging of 4 scans. The 3D angiography was segmented into 3 layers: inner retina (to show retinal vasculature), outer retina (to identify CNV), and choroid. En face maximum projection was used to obtain 2-dimensional angiograms from the 3 layers. The CNV area and flow index were computed from the en face OCT angiogram of the outer retinal layer. Flow (decorrelation) and structural data were combined in composite color angiograms for both en face and cross-sectional views. Main Outcome Measures The CNV angiogram, CNV area, and CNV flow index. Results En face OCT angiograms of CNV showed sizes and locations that were confirmed by fluorescein angiography (FA). Optical coherence tomography angiography provided more distinct vascular network patterns that were less obscured by subretinal hemorrhage. The en face angiograms also showed areas of reduced choroidal flow adjacent to the CNV in all cases and significantly reduced retinal flow in 1 case. Cross-sectional angiograms were used to visualize CNV location relative to the retinal pigment epithelium and Bruch's layer and classify type I and type II CNV. A feeder vessel could be identified in 1 case. Higher flow indexes were associated with larger CNV and type II CNV. Conclusions Optical coherence tomography angiography provides depth-resolved information and detailed images of CNV in neovascular AMD. Quantitative information regarding CNV flow and area can be obtained. Further studies are needed to assess the role of quantitative OCT angiography in the evaluation and treatment of neovascular AMD.

AB - Purpose To detect and quantify choroidal neovascularization (CNV) in patients with age-related macular degeneration (AMD) using optical coherence tomography (OCT) angiography. Design Observational, cross-sectional study. Participants A total of 5 normal subjects and 5 subjects with neovascular AMD were included. Methods A total of 5 eyes with neovascular AMD and 5 normal age-matched controls were scanned by a high-speed (100 000 A-scans/seconds) 1050-nm wavelength swept-source OCT. The macular angiography scan covered a 3×3-mm area and comprised 200×200×8 A-scans acquired in 3.5 seconds. Flow was detected using the split-spectrum amplitude-decorrelation angiography (SSADA) algorithm. Motion artifacts were removed by 3-dimensional (3D) orthogonal registration and merging of 4 scans. The 3D angiography was segmented into 3 layers: inner retina (to show retinal vasculature), outer retina (to identify CNV), and choroid. En face maximum projection was used to obtain 2-dimensional angiograms from the 3 layers. The CNV area and flow index were computed from the en face OCT angiogram of the outer retinal layer. Flow (decorrelation) and structural data were combined in composite color angiograms for both en face and cross-sectional views. Main Outcome Measures The CNV angiogram, CNV area, and CNV flow index. Results En face OCT angiograms of CNV showed sizes and locations that were confirmed by fluorescein angiography (FA). Optical coherence tomography angiography provided more distinct vascular network patterns that were less obscured by subretinal hemorrhage. The en face angiograms also showed areas of reduced choroidal flow adjacent to the CNV in all cases and significantly reduced retinal flow in 1 case. Cross-sectional angiograms were used to visualize CNV location relative to the retinal pigment epithelium and Bruch's layer and classify type I and type II CNV. A feeder vessel could be identified in 1 case. Higher flow indexes were associated with larger CNV and type II CNV. Conclusions Optical coherence tomography angiography provides depth-resolved information and detailed images of CNV in neovascular AMD. Quantitative information regarding CNV flow and area can be obtained. Further studies are needed to assess the role of quantitative OCT angiography in the evaluation and treatment of neovascular AMD.

UR - http://www.scopus.com/inward/record.url?scp=84903821646&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84903821646&partnerID=8YFLogxK

U2 - 10.1016/j.ophtha.2014.01.034

DO - 10.1016/j.ophtha.2014.01.034

M3 - Article

C2 - 24679442

AN - SCOPUS:84903821646

VL - 121

SP - 1435

EP - 1444

JO - Ophthalmology

JF - Ophthalmology

SN - 0161-6420

IS - 7

ER -