Pseudoprogression of glioblastoma after chemo- and radiation therapy

Diagnosis by using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging with ferumoxytol versus gadoteridol and correlation with survival

Research output: Contribution to journalArticle

93 Citations (Scopus)

Abstract

Purpose: To compare gadoteridol and ferumoxytol for measurement of relative cerebral blood volume (rCBV) in patients with glioblastoma multiforme (GBM) who showed progressive disease at conventional magnetic resonance (MR) imaging after chemo- and radiation therapy (hereafter, chemoradiotherapy) and to correlate rCBV with survival. Materials and Methods: Informed consent was obtained from all participants before enrollment in one of four institutional review board-approved protocols. Contrast agent leakage maps and rCBV were derived from perfusion MR imaging with gadoteridol and ferumoxytol in 19 patients with apparently progressive GBM on conventional MR images after chemoradiotherapy. Patients were classified as having high rCBV (>1.75), indicating tumor, and low rCBV (≥1.75), indicating pseudoprogression, for each contrast agent separately, and with or without contrast agent leakage correction for imaging with gadoteridol. Statistical analysis was performed by using Kaplan-Meier survival plots with the log-rank test and Cox proportional hazards models. Results: With ferumoxytol, rCBV was low in nine (47%) patients, with median overall survival (mOS) of 591 days, and high rCBV in 10 (53%) patients, with mOS of 163 days. A hazard ratio of 0.098 (P = .004) indicated significantly improved survival. With gadoteridol, rCBV was low in 14 (74%) patients, with mOS of 474 days, and high in five (26%), with mOS of 156 days and a nonsignificant hazard ratio of 0.339 (P = .093). Five patients with mismatched high rCBV with ferumoxytol and low rCBV with gadoteridol had an mOS of 171 days. When leakage correction was applied, rCBV with gadoteridol was significantly associated with survival (hazard ratio, 0.12; P = .003). Conclusion: Ferumoxytol as a blood pool agent facilitates differentiation between tumor progression and pseudoprogression, appears to be a good prognostic biomarker, and unlike gadoteridol, does not require contrast agent leakage correction.

Original languageEnglish (US)
Pages (from-to)842-852
Number of pages11
JournalRadiology
Volume266
Issue number3
DOIs
StatePublished - Mar 2013

Fingerprint

Ferrosoferric Oxide
Magnetic Resonance Angiography
Glioblastoma
Radiotherapy
Survival
Contrast Media
Chemoradiotherapy
gadoteridol
Cerebral Blood Volume
Research Ethics Committees
Informed Consent
Proportional Hazards Models
Neoplasms
Magnetic Resonance Spectroscopy

ASJC Scopus subject areas

  • Radiology Nuclear Medicine and imaging

Cite this

@article{3e2154dd4762417d8a20c55ff086af84,
title = "Pseudoprogression of glioblastoma after chemo- and radiation therapy: Diagnosis by using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging with ferumoxytol versus gadoteridol and correlation with survival",
abstract = "Purpose: To compare gadoteridol and ferumoxytol for measurement of relative cerebral blood volume (rCBV) in patients with glioblastoma multiforme (GBM) who showed progressive disease at conventional magnetic resonance (MR) imaging after chemo- and radiation therapy (hereafter, chemoradiotherapy) and to correlate rCBV with survival. Materials and Methods: Informed consent was obtained from all participants before enrollment in one of four institutional review board-approved protocols. Contrast agent leakage maps and rCBV were derived from perfusion MR imaging with gadoteridol and ferumoxytol in 19 patients with apparently progressive GBM on conventional MR images after chemoradiotherapy. Patients were classified as having high rCBV (>1.75), indicating tumor, and low rCBV (≥1.75), indicating pseudoprogression, for each contrast agent separately, and with or without contrast agent leakage correction for imaging with gadoteridol. Statistical analysis was performed by using Kaplan-Meier survival plots with the log-rank test and Cox proportional hazards models. Results: With ferumoxytol, rCBV was low in nine (47{\%}) patients, with median overall survival (mOS) of 591 days, and high rCBV in 10 (53{\%}) patients, with mOS of 163 days. A hazard ratio of 0.098 (P = .004) indicated significantly improved survival. With gadoteridol, rCBV was low in 14 (74{\%}) patients, with mOS of 474 days, and high in five (26{\%}), with mOS of 156 days and a nonsignificant hazard ratio of 0.339 (P = .093). Five patients with mismatched high rCBV with ferumoxytol and low rCBV with gadoteridol had an mOS of 171 days. When leakage correction was applied, rCBV with gadoteridol was significantly associated with survival (hazard ratio, 0.12; P = .003). Conclusion: Ferumoxytol as a blood pool agent facilitates differentiation between tumor progression and pseudoprogression, appears to be a good prognostic biomarker, and unlike gadoteridol, does not require contrast agent leakage correction.",
author = "Seymur Gahramanov and Leslie Muldoon and Varallyay, {Csanad G.} and Xin Li and Dale Kraemer and Fu, {Rongwei (Rochelle)} and Bronwyn Hamilton and William Rooney and Edward Neuwelt",
year = "2013",
month = "3",
doi = "10.1148/radiol.12111472",
language = "English (US)",
volume = "266",
pages = "842--852",
journal = "Radiology",
issn = "0033-8419",
publisher = "Radiological Society of North America Inc.",
number = "3",

}

TY - JOUR

T1 - Pseudoprogression of glioblastoma after chemo- and radiation therapy

T2 - Diagnosis by using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging with ferumoxytol versus gadoteridol and correlation with survival

AU - Gahramanov, Seymur

AU - Muldoon, Leslie

AU - Varallyay, Csanad G.

AU - Li, Xin

AU - Kraemer, Dale

AU - Fu, Rongwei (Rochelle)

AU - Hamilton, Bronwyn

AU - Rooney, William

AU - Neuwelt, Edward

PY - 2013/3

Y1 - 2013/3

N2 - Purpose: To compare gadoteridol and ferumoxytol for measurement of relative cerebral blood volume (rCBV) in patients with glioblastoma multiforme (GBM) who showed progressive disease at conventional magnetic resonance (MR) imaging after chemo- and radiation therapy (hereafter, chemoradiotherapy) and to correlate rCBV with survival. Materials and Methods: Informed consent was obtained from all participants before enrollment in one of four institutional review board-approved protocols. Contrast agent leakage maps and rCBV were derived from perfusion MR imaging with gadoteridol and ferumoxytol in 19 patients with apparently progressive GBM on conventional MR images after chemoradiotherapy. Patients were classified as having high rCBV (>1.75), indicating tumor, and low rCBV (≥1.75), indicating pseudoprogression, for each contrast agent separately, and with or without contrast agent leakage correction for imaging with gadoteridol. Statistical analysis was performed by using Kaplan-Meier survival plots with the log-rank test and Cox proportional hazards models. Results: With ferumoxytol, rCBV was low in nine (47%) patients, with median overall survival (mOS) of 591 days, and high rCBV in 10 (53%) patients, with mOS of 163 days. A hazard ratio of 0.098 (P = .004) indicated significantly improved survival. With gadoteridol, rCBV was low in 14 (74%) patients, with mOS of 474 days, and high in five (26%), with mOS of 156 days and a nonsignificant hazard ratio of 0.339 (P = .093). Five patients with mismatched high rCBV with ferumoxytol and low rCBV with gadoteridol had an mOS of 171 days. When leakage correction was applied, rCBV with gadoteridol was significantly associated with survival (hazard ratio, 0.12; P = .003). Conclusion: Ferumoxytol as a blood pool agent facilitates differentiation between tumor progression and pseudoprogression, appears to be a good prognostic biomarker, and unlike gadoteridol, does not require contrast agent leakage correction.

AB - Purpose: To compare gadoteridol and ferumoxytol for measurement of relative cerebral blood volume (rCBV) in patients with glioblastoma multiforme (GBM) who showed progressive disease at conventional magnetic resonance (MR) imaging after chemo- and radiation therapy (hereafter, chemoradiotherapy) and to correlate rCBV with survival. Materials and Methods: Informed consent was obtained from all participants before enrollment in one of four institutional review board-approved protocols. Contrast agent leakage maps and rCBV were derived from perfusion MR imaging with gadoteridol and ferumoxytol in 19 patients with apparently progressive GBM on conventional MR images after chemoradiotherapy. Patients were classified as having high rCBV (>1.75), indicating tumor, and low rCBV (≥1.75), indicating pseudoprogression, for each contrast agent separately, and with or without contrast agent leakage correction for imaging with gadoteridol. Statistical analysis was performed by using Kaplan-Meier survival plots with the log-rank test and Cox proportional hazards models. Results: With ferumoxytol, rCBV was low in nine (47%) patients, with median overall survival (mOS) of 591 days, and high rCBV in 10 (53%) patients, with mOS of 163 days. A hazard ratio of 0.098 (P = .004) indicated significantly improved survival. With gadoteridol, rCBV was low in 14 (74%) patients, with mOS of 474 days, and high in five (26%), with mOS of 156 days and a nonsignificant hazard ratio of 0.339 (P = .093). Five patients with mismatched high rCBV with ferumoxytol and low rCBV with gadoteridol had an mOS of 171 days. When leakage correction was applied, rCBV with gadoteridol was significantly associated with survival (hazard ratio, 0.12; P = .003). Conclusion: Ferumoxytol as a blood pool agent facilitates differentiation between tumor progression and pseudoprogression, appears to be a good prognostic biomarker, and unlike gadoteridol, does not require contrast agent leakage correction.

UR - http://www.scopus.com/inward/record.url?scp=84874310719&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84874310719&partnerID=8YFLogxK

U2 - 10.1148/radiol.12111472

DO - 10.1148/radiol.12111472

M3 - Article

VL - 266

SP - 842

EP - 852

JO - Radiology

JF - Radiology

SN - 0033-8419

IS - 3

ER -