TY - JOUR
T1 - Proteomic Profile of Mouse Brain Aging Contributions to Mitochondrial Dysfunction, DNA Oxidative Damage, Loss of Neurotrophic Factor, and Synaptic and Ribosomal Proteins
AU - Li, Yingchao
AU - Li, Yingchao
AU - Yu, Haitao
AU - Yu, Haitao
AU - Chen, Chongyang
AU - Chen, Chongyang
AU - Li, Shupeng
AU - Zhang, Zaijun
AU - Xu, Hua
AU - Zhu, Feiqi
AU - Liu, Jianjun
AU - Liu, Jianjun
AU - Spencer, Peter S.
AU - Dai, Zhongliang
AU - Yang, Xifei
N1 - Funding Information:
This work was supported by the National Natural Science Foundation of China (81673134 and 81401570), Guangdong Provincial Key R&D Program (2018B030336001), the Shenzhen Special Fund Project on Strategic Emerging Industry Development (JCYJ20160428143433768, JCYJ20170818111012390, JCYJ20160422143433757, and JCYJ20170810163329510), and Sanming Project of Medicine in Shenzhen (SZSM201611090). The authors would like to thank Dr. Benhong Xu for the technical support in data analysis.
Funding Information:
The deleterious effects of aging on the brain remain to be fully elucidated. In the present study, proteomic changes of young (4-month) and aged (16-month) B6129SF2/J male mouse hippocampus and cerebral cortex were investigated by using nano liquid chromatography tandem mass spectrometry (NanoLC-ESI-MS/MS) combined with tandem mass tag (TMT) labeling technology. Compared with the young animals, 390 hippocampal proteins (121 increased and 269 decreased) and 258 cortical proteins (149 increased and 109 decreased) changed significantly in the aged mouse. Bioinformatic analysis indicated that these proteins are mainly involved in mitochondrial functions (FIS1, DRP1), oxidative stress (PRDX6, GSTP1, and GSTM1), synapses (SYT12, GLUR2), ribosome (RPL4, RPS3), cytoskeletal integrity, transcriptional regulation, and GTPase function. The mitochondrial fission-related proteins FIS1 and DRP1 were significantly increased in the hippocampus and cerebral cortex of the aged mice. Further results in the hippocampus showed that ATP content was significantly reduced in aged mice. A neurotrophin brain-derived neurotrophic factor (BNDF), a protein closely related with synaptic plasticity and memory, was also significantly decreased in the hippocampus of the aged mice, with the tendency of synaptic protein markers including complexin-2, synaptophysin, GLUR2, PSD95, NMDAR2A, and NMDAR1. More interestingly, 8-hydroxydeoxyguanosine (8-OHdG), a marker of DNA oxidative damage, increased as shown by immunofluorescence staining. In summary, we demonstrated that aging is associated with systemic changes involving mitochondrial dysfunction, energy reduction, oxidative stress, loss of neurotrophic factor, synaptic proteins, and ribosomal proteins, as well as molecular deficits involved in various physiological/pathological processes. Sanming Project of Medicine in Shenzhen SZSM201611090 Shenzhen Special Fund Project on Strategic Emerging Industry Development JCYJ20170810163329510 JCYJ20160422143433757 JCYJ20170818111012390 JCYJ20160428143433768 Guangdong Provincial Key R&D Program 2018B030336001 National Natural Science Foundation of China 81401570 81673134
Publisher Copyright:
© 2020 Yingchao Li et al.
PY - 2020
Y1 - 2020
N2 - The deleterious effects of aging on the brain remain to be fully elucidated. In the present study, proteomic changes of young (4-month) and aged (16-month) B6129SF2/J male mouse hippocampus and cerebral cortex were investigated by using nano liquid chromatography tandem mass spectrometry (NanoLC-ESI-MS/MS) combined with tandem mass tag (TMT) labeling technology. Compared with the young animals, 390 hippocampal proteins (121 increased and 269 decreased) and 258 cortical proteins (149 increased and 109 decreased) changed significantly in the aged mouse. Bioinformatic analysis indicated that these proteins are mainly involved in mitochondrial functions (FIS1, DRP1), oxidative stress (PRDX6, GSTP1, and GSTM1), synapses (SYT12, GLUR2), ribosome (RPL4, RPS3), cytoskeletal integrity, transcriptional regulation, and GTPase function. The mitochondrial fission-related proteins FIS1 and DRP1 were significantly increased in the hippocampus and cerebral cortex of the aged mice. Further results in the hippocampus showed that ATP content was significantly reduced in aged mice. A neurotrophin brain-derived neurotrophic factor (BNDF), a protein closely related with synaptic plasticity and memory, was also significantly decreased in the hippocampus of the aged mice, with the tendency of synaptic protein markers including complexin-2, synaptophysin, GLUR2, PSD95, NMDAR2A, and NMDAR1. More interestingly, 8-hydroxydeoxyguanosine (8-OHdG), a marker of DNA oxidative damage, increased as shown by immunofluorescence staining. In summary, we demonstrated that aging is associated with systemic changes involving mitochondrial dysfunction, energy reduction, oxidative stress, loss of neurotrophic factor, synaptic proteins, and ribosomal proteins, as well as molecular deficits involved in various physiological/pathological processes.
AB - The deleterious effects of aging on the brain remain to be fully elucidated. In the present study, proteomic changes of young (4-month) and aged (16-month) B6129SF2/J male mouse hippocampus and cerebral cortex were investigated by using nano liquid chromatography tandem mass spectrometry (NanoLC-ESI-MS/MS) combined with tandem mass tag (TMT) labeling technology. Compared with the young animals, 390 hippocampal proteins (121 increased and 269 decreased) and 258 cortical proteins (149 increased and 109 decreased) changed significantly in the aged mouse. Bioinformatic analysis indicated that these proteins are mainly involved in mitochondrial functions (FIS1, DRP1), oxidative stress (PRDX6, GSTP1, and GSTM1), synapses (SYT12, GLUR2), ribosome (RPL4, RPS3), cytoskeletal integrity, transcriptional regulation, and GTPase function. The mitochondrial fission-related proteins FIS1 and DRP1 were significantly increased in the hippocampus and cerebral cortex of the aged mice. Further results in the hippocampus showed that ATP content was significantly reduced in aged mice. A neurotrophin brain-derived neurotrophic factor (BNDF), a protein closely related with synaptic plasticity and memory, was also significantly decreased in the hippocampus of the aged mice, with the tendency of synaptic protein markers including complexin-2, synaptophysin, GLUR2, PSD95, NMDAR2A, and NMDAR1. More interestingly, 8-hydroxydeoxyguanosine (8-OHdG), a marker of DNA oxidative damage, increased as shown by immunofluorescence staining. In summary, we demonstrated that aging is associated with systemic changes involving mitochondrial dysfunction, energy reduction, oxidative stress, loss of neurotrophic factor, synaptic proteins, and ribosomal proteins, as well as molecular deficits involved in various physiological/pathological processes.
UR - http://www.scopus.com/inward/record.url?scp=85087138723&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85087138723&partnerID=8YFLogxK
U2 - 10.1155/2020/5408452
DO - 10.1155/2020/5408452
M3 - Article
C2 - 32587661
AN - SCOPUS:85087138723
SN - 1942-0900
VL - 2020
JO - Oxidative Medicine and Cellular Longevity
JF - Oxidative Medicine and Cellular Longevity
M1 - 5408452
ER -