Proteomic alterations of brain subcellular organelles caused by low-dose copper exposure: implication for Alzheimer’s disease

Haitao Yu, Dian Wang, Liangyu Zou, Zaijun Zhang, Hua Xu, Feiqi Zhu, Xiaohu Ren, Benhong Xu, Jianhui Yuan, Jianjun Liu, Peter Spencer, Xifei Yang

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

Excessive copper intake can lead to neurotoxicity, but there is a lack of comprehensive understanding on the potential impact of copper exposure especially at a low-dose on brain. We used 3xTg-AD mice to explore the potential neurotoxicity of chronic, low-dose copper treatment (0.13 ppm copper chloride in drinking water) on behavior and the brain hippocampal mitochondrial and nuclear proteome. Low-dose copper increased the spatial memory impairment of these animals, increased accumulation of intracellular amyloid 1–42 (Aβ1–42), decreased ATP content, increased the positive staining of 8-hydroxyguanosine (8-OHdG), a marker of DNA oxidative damage, and caused apoptosis and a decrease in synaptic proteins. Mitochondrial proteomic analysis by two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) revealed modulation of 24 hippocampal mitochondrial proteins (14 increased and 10 decreased) in copper-treated vs. untreated 3xTg-AD mice. Nuclear proteomic analysis revealed 43 modulated hippocampal nuclear proteins (25 increased and 18 decreased) in copper-treated 3xTg-AD vs. untreated mice. Classification of modulated mitochondrial and nuclear proteins included functional categories such as energy metabolism, synaptic-related proteins, DNA damage and apoptosis-related proteins, and oxidative stress-related proteins. Among these differentially expressed mitochondrial and nuclear proteins, nine proteins were abnormally expressed in both hippocampus mitochondria and nuclei, including electron transport chain-related proteins NADH dehydrogenase 1 alpha subcomplex subunit 10 (NDUAA), cytochrome b-c1 complex subunit Rieske (UCRI), cytochrome c oxidase subunit 5B (COX5B), and ATP synthase subunit d (ATP5H), glycolytic-related pyruvate kinase PKM (KPYM) and pyruvate dehydrogenase E1 component subunit alpha (ODPA). Furthermore, we found coenzyme Q10 (CoQ10), an endogenous mitochondrial protective factor/antioxidant, modulated the expression of 12 differentially expressed hippocampal proteins (4 increased and 8 decreased), which could be classified in functional categories such as glycolysis and synaptic-related proteins, oxidative stress-related proteins, implying that CoQ10 improved synaptic function, suppress oxidative stress, and regulate glycolysis. For the proteomics study, we validated the expression of several proteins related to synapses, DNA and apoptosis. The data confirmed that synapsin-2, a synaptic-related protein, was significantly decreased in both mitochondria and nuclei of copper-exposed 3xTg-AD mice. In mitochondria, dynamin-1 (DYN1), an apoptosis-related proteins, was significantly decreased. In the cellular nuclei, paraspeckle protein 1 (PSPC1) and purin-rich element-binding protein alpha (Purα), two DNA damage-related proteins, were significantly decreased and increased, respectively. We conclude that low-dose copper exposure exacerbates the spatial memory impairment of 3xTg-AD mice and perturbs multiple biological/pathogenic processes by dysregulating the mitochondrial and nuclear proteome. Exposure to copper might therefore contribute to the evolution of AD.

Original languageEnglish (US)
Pages (from-to)1-20
Number of pages20
JournalArchives of Toxicology
DOIs
StateAccepted/In press - Jan 30 2018

Fingerprint

Organelles
Proteomics
Copper
Brain
Alzheimer Disease
Proteins
coenzyme Q10
Mitochondrial Proteins
Mitochondria
Nuclear Proteins
Oxidative stress
Two-Dimensional Difference Gel Electrophoresis
Apoptosis
DNA Damage
Oxidative Stress
Glycolysis
Proteome
Heat-Shock Proteins
DNA
Dynamin I

Keywords

  • 3xTg-AD mice
  • Alzheimer’s disease
  • Copper
  • Mitochondrial/nuclear proteomics
  • Neurotoxicity

ASJC Scopus subject areas

  • Toxicology
  • Health, Toxicology and Mutagenesis

Cite this

Proteomic alterations of brain subcellular organelles caused by low-dose copper exposure : implication for Alzheimer’s disease. / Yu, Haitao; Wang, Dian; Zou, Liangyu; Zhang, Zaijun; Xu, Hua; Zhu, Feiqi; Ren, Xiaohu; Xu, Benhong; Yuan, Jianhui; Liu, Jianjun; Spencer, Peter; Yang, Xifei.

In: Archives of Toxicology, 30.01.2018, p. 1-20.

Research output: Contribution to journalArticle

Yu, Haitao ; Wang, Dian ; Zou, Liangyu ; Zhang, Zaijun ; Xu, Hua ; Zhu, Feiqi ; Ren, Xiaohu ; Xu, Benhong ; Yuan, Jianhui ; Liu, Jianjun ; Spencer, Peter ; Yang, Xifei. / Proteomic alterations of brain subcellular organelles caused by low-dose copper exposure : implication for Alzheimer’s disease. In: Archives of Toxicology. 2018 ; pp. 1-20.
@article{9b78a4f1b2f44db59bba72295cf7a2d8,
title = "Proteomic alterations of brain subcellular organelles caused by low-dose copper exposure: implication for Alzheimer’s disease",
abstract = "Excessive copper intake can lead to neurotoxicity, but there is a lack of comprehensive understanding on the potential impact of copper exposure especially at a low-dose on brain. We used 3xTg-AD mice to explore the potential neurotoxicity of chronic, low-dose copper treatment (0.13 ppm copper chloride in drinking water) on behavior and the brain hippocampal mitochondrial and nuclear proteome. Low-dose copper increased the spatial memory impairment of these animals, increased accumulation of intracellular amyloid 1–42 (Aβ1–42), decreased ATP content, increased the positive staining of 8-hydroxyguanosine (8-OHdG), a marker of DNA oxidative damage, and caused apoptosis and a decrease in synaptic proteins. Mitochondrial proteomic analysis by two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) revealed modulation of 24 hippocampal mitochondrial proteins (14 increased and 10 decreased) in copper-treated vs. untreated 3xTg-AD mice. Nuclear proteomic analysis revealed 43 modulated hippocampal nuclear proteins (25 increased and 18 decreased) in copper-treated 3xTg-AD vs. untreated mice. Classification of modulated mitochondrial and nuclear proteins included functional categories such as energy metabolism, synaptic-related proteins, DNA damage and apoptosis-related proteins, and oxidative stress-related proteins. Among these differentially expressed mitochondrial and nuclear proteins, nine proteins were abnormally expressed in both hippocampus mitochondria and nuclei, including electron transport chain-related proteins NADH dehydrogenase 1 alpha subcomplex subunit 10 (NDUAA), cytochrome b-c1 complex subunit Rieske (UCRI), cytochrome c oxidase subunit 5B (COX5B), and ATP synthase subunit d (ATP5H), glycolytic-related pyruvate kinase PKM (KPYM) and pyruvate dehydrogenase E1 component subunit alpha (ODPA). Furthermore, we found coenzyme Q10 (CoQ10), an endogenous mitochondrial protective factor/antioxidant, modulated the expression of 12 differentially expressed hippocampal proteins (4 increased and 8 decreased), which could be classified in functional categories such as glycolysis and synaptic-related proteins, oxidative stress-related proteins, implying that CoQ10 improved synaptic function, suppress oxidative stress, and regulate glycolysis. For the proteomics study, we validated the expression of several proteins related to synapses, DNA and apoptosis. The data confirmed that synapsin-2, a synaptic-related protein, was significantly decreased in both mitochondria and nuclei of copper-exposed 3xTg-AD mice. In mitochondria, dynamin-1 (DYN1), an apoptosis-related proteins, was significantly decreased. In the cellular nuclei, paraspeckle protein 1 (PSPC1) and purin-rich element-binding protein alpha (Purα), two DNA damage-related proteins, were significantly decreased and increased, respectively. We conclude that low-dose copper exposure exacerbates the spatial memory impairment of 3xTg-AD mice and perturbs multiple biological/pathogenic processes by dysregulating the mitochondrial and nuclear proteome. Exposure to copper might therefore contribute to the evolution of AD.",
keywords = "3xTg-AD mice, Alzheimer’s disease, Copper, Mitochondrial/nuclear proteomics, Neurotoxicity",
author = "Haitao Yu and Dian Wang and Liangyu Zou and Zaijun Zhang and Hua Xu and Feiqi Zhu and Xiaohu Ren and Benhong Xu and Jianhui Yuan and Jianjun Liu and Peter Spencer and Xifei Yang",
year = "2018",
month = "1",
day = "30",
doi = "10.1007/s00204-018-2163-6",
language = "English (US)",
pages = "1--20",
journal = "Archiv fur Toxikologie",
issn = "0003-9446",
publisher = "Springer Verlag",

}

TY - JOUR

T1 - Proteomic alterations of brain subcellular organelles caused by low-dose copper exposure

T2 - implication for Alzheimer’s disease

AU - Yu, Haitao

AU - Wang, Dian

AU - Zou, Liangyu

AU - Zhang, Zaijun

AU - Xu, Hua

AU - Zhu, Feiqi

AU - Ren, Xiaohu

AU - Xu, Benhong

AU - Yuan, Jianhui

AU - Liu, Jianjun

AU - Spencer, Peter

AU - Yang, Xifei

PY - 2018/1/30

Y1 - 2018/1/30

N2 - Excessive copper intake can lead to neurotoxicity, but there is a lack of comprehensive understanding on the potential impact of copper exposure especially at a low-dose on brain. We used 3xTg-AD mice to explore the potential neurotoxicity of chronic, low-dose copper treatment (0.13 ppm copper chloride in drinking water) on behavior and the brain hippocampal mitochondrial and nuclear proteome. Low-dose copper increased the spatial memory impairment of these animals, increased accumulation of intracellular amyloid 1–42 (Aβ1–42), decreased ATP content, increased the positive staining of 8-hydroxyguanosine (8-OHdG), a marker of DNA oxidative damage, and caused apoptosis and a decrease in synaptic proteins. Mitochondrial proteomic analysis by two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) revealed modulation of 24 hippocampal mitochondrial proteins (14 increased and 10 decreased) in copper-treated vs. untreated 3xTg-AD mice. Nuclear proteomic analysis revealed 43 modulated hippocampal nuclear proteins (25 increased and 18 decreased) in copper-treated 3xTg-AD vs. untreated mice. Classification of modulated mitochondrial and nuclear proteins included functional categories such as energy metabolism, synaptic-related proteins, DNA damage and apoptosis-related proteins, and oxidative stress-related proteins. Among these differentially expressed mitochondrial and nuclear proteins, nine proteins were abnormally expressed in both hippocampus mitochondria and nuclei, including electron transport chain-related proteins NADH dehydrogenase 1 alpha subcomplex subunit 10 (NDUAA), cytochrome b-c1 complex subunit Rieske (UCRI), cytochrome c oxidase subunit 5B (COX5B), and ATP synthase subunit d (ATP5H), glycolytic-related pyruvate kinase PKM (KPYM) and pyruvate dehydrogenase E1 component subunit alpha (ODPA). Furthermore, we found coenzyme Q10 (CoQ10), an endogenous mitochondrial protective factor/antioxidant, modulated the expression of 12 differentially expressed hippocampal proteins (4 increased and 8 decreased), which could be classified in functional categories such as glycolysis and synaptic-related proteins, oxidative stress-related proteins, implying that CoQ10 improved synaptic function, suppress oxidative stress, and regulate glycolysis. For the proteomics study, we validated the expression of several proteins related to synapses, DNA and apoptosis. The data confirmed that synapsin-2, a synaptic-related protein, was significantly decreased in both mitochondria and nuclei of copper-exposed 3xTg-AD mice. In mitochondria, dynamin-1 (DYN1), an apoptosis-related proteins, was significantly decreased. In the cellular nuclei, paraspeckle protein 1 (PSPC1) and purin-rich element-binding protein alpha (Purα), two DNA damage-related proteins, were significantly decreased and increased, respectively. We conclude that low-dose copper exposure exacerbates the spatial memory impairment of 3xTg-AD mice and perturbs multiple biological/pathogenic processes by dysregulating the mitochondrial and nuclear proteome. Exposure to copper might therefore contribute to the evolution of AD.

AB - Excessive copper intake can lead to neurotoxicity, but there is a lack of comprehensive understanding on the potential impact of copper exposure especially at a low-dose on brain. We used 3xTg-AD mice to explore the potential neurotoxicity of chronic, low-dose copper treatment (0.13 ppm copper chloride in drinking water) on behavior and the brain hippocampal mitochondrial and nuclear proteome. Low-dose copper increased the spatial memory impairment of these animals, increased accumulation of intracellular amyloid 1–42 (Aβ1–42), decreased ATP content, increased the positive staining of 8-hydroxyguanosine (8-OHdG), a marker of DNA oxidative damage, and caused apoptosis and a decrease in synaptic proteins. Mitochondrial proteomic analysis by two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) revealed modulation of 24 hippocampal mitochondrial proteins (14 increased and 10 decreased) in copper-treated vs. untreated 3xTg-AD mice. Nuclear proteomic analysis revealed 43 modulated hippocampal nuclear proteins (25 increased and 18 decreased) in copper-treated 3xTg-AD vs. untreated mice. Classification of modulated mitochondrial and nuclear proteins included functional categories such as energy metabolism, synaptic-related proteins, DNA damage and apoptosis-related proteins, and oxidative stress-related proteins. Among these differentially expressed mitochondrial and nuclear proteins, nine proteins were abnormally expressed in both hippocampus mitochondria and nuclei, including electron transport chain-related proteins NADH dehydrogenase 1 alpha subcomplex subunit 10 (NDUAA), cytochrome b-c1 complex subunit Rieske (UCRI), cytochrome c oxidase subunit 5B (COX5B), and ATP synthase subunit d (ATP5H), glycolytic-related pyruvate kinase PKM (KPYM) and pyruvate dehydrogenase E1 component subunit alpha (ODPA). Furthermore, we found coenzyme Q10 (CoQ10), an endogenous mitochondrial protective factor/antioxidant, modulated the expression of 12 differentially expressed hippocampal proteins (4 increased and 8 decreased), which could be classified in functional categories such as glycolysis and synaptic-related proteins, oxidative stress-related proteins, implying that CoQ10 improved synaptic function, suppress oxidative stress, and regulate glycolysis. For the proteomics study, we validated the expression of several proteins related to synapses, DNA and apoptosis. The data confirmed that synapsin-2, a synaptic-related protein, was significantly decreased in both mitochondria and nuclei of copper-exposed 3xTg-AD mice. In mitochondria, dynamin-1 (DYN1), an apoptosis-related proteins, was significantly decreased. In the cellular nuclei, paraspeckle protein 1 (PSPC1) and purin-rich element-binding protein alpha (Purα), two DNA damage-related proteins, were significantly decreased and increased, respectively. We conclude that low-dose copper exposure exacerbates the spatial memory impairment of 3xTg-AD mice and perturbs multiple biological/pathogenic processes by dysregulating the mitochondrial and nuclear proteome. Exposure to copper might therefore contribute to the evolution of AD.

KW - 3xTg-AD mice

KW - Alzheimer’s disease

KW - Copper

KW - Mitochondrial/nuclear proteomics

KW - Neurotoxicity

UR - http://www.scopus.com/inward/record.url?scp=85041214797&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85041214797&partnerID=8YFLogxK

U2 - 10.1007/s00204-018-2163-6

DO - 10.1007/s00204-018-2163-6

M3 - Article

C2 - 29383422

AN - SCOPUS:85041214797

SP - 1

EP - 20

JO - Archiv fur Toxikologie

JF - Archiv fur Toxikologie

SN - 0003-9446

ER -