Proteolytic processing of rat liver membrane secretory component. Cleavage activity is localized to bile canalicular membranes

Linda Musil, J. U. Baenziger

Research output: Contribution to journalArticle

29 Citations (Scopus)

Abstract

Membrane secretory component (mSC) mediates the transcellular movement of polymeric IgA from the sinusoidal to the bile canalicular surface of rat hepatocytes. Prior to or concomitant with arrival at the bile canalicular membrane, mSC is cleaved, producing a soluble proteolytic fragment (fSC) which is released into the bile. Conversion of mSC to fSC occurs at the cell surface of cultured rat hepatocytes (Musil, L.S., and Baenziger, J.U. (1987) J. Cell Biol. 104, 1725-1733), suggesting that vectorial release of fSC into bile in vivo may reflect localization of a mSC-specific protease to bile canalicular membranes. We have established a reconstituted system to examine the process of specific cleavage of mSC to yield fSC and to characterize the protease activity responsible. A membrane fraction highly enriched for endocytic vesicles was found to contain ~90% of the [35S]Cys-mSC from metabolically labeled rat liver slices but only 5% of the cellular protein. No cleavage activity was present in these vesicles. Highly enriched bile canalicular membranes were able to mediate cleavage of metabolically labeled mSC to a fragment indistinguishable from authentic fSC. In the absence of nonionic detergent, cleavage was dependent on the presence of polyethylene glycol, presumably to mediate fusion of mSC-enriched membranes with bile canalicular membranes. Following solubilization with nonionic detergent, cleavage was no longer dependent on the addition of polyethylene glycol. Cleavage of mSC was not observed with either intact or detergent-solubilized sinusoidal, microsomal, or lysosomal membranes. We have thus identified a proteolytic activity associated with bile canalicular membranes which has the properties of a membrane protein and is likely to be responsible for production of fSC in vivo. Its highly restricted localization to the bile canalicular membrane would account for the vectorial release of fSC into the bile.

Original languageEnglish (US)
Pages (from-to)15799-15808
Number of pages10
JournalJournal of Biological Chemistry
Volume263
Issue number30
StatePublished - 1988
Externally publishedYes

Fingerprint

Secretory Component
Bile
Liver
Rats
Membranes
Processing
Detergents
Hepatocytes
Peptide Hydrolases
Transport Vesicles
Membrane Fusion

ASJC Scopus subject areas

  • Biochemistry

Cite this

Proteolytic processing of rat liver membrane secretory component. Cleavage activity is localized to bile canalicular membranes. / Musil, Linda; Baenziger, J. U.

In: Journal of Biological Chemistry, Vol. 263, No. 30, 1988, p. 15799-15808.

Research output: Contribution to journalArticle

@article{1379758ea54446b894c9382c2b18e08f,
title = "Proteolytic processing of rat liver membrane secretory component. Cleavage activity is localized to bile canalicular membranes",
abstract = "Membrane secretory component (mSC) mediates the transcellular movement of polymeric IgA from the sinusoidal to the bile canalicular surface of rat hepatocytes. Prior to or concomitant with arrival at the bile canalicular membrane, mSC is cleaved, producing a soluble proteolytic fragment (fSC) which is released into the bile. Conversion of mSC to fSC occurs at the cell surface of cultured rat hepatocytes (Musil, L.S., and Baenziger, J.U. (1987) J. Cell Biol. 104, 1725-1733), suggesting that vectorial release of fSC into bile in vivo may reflect localization of a mSC-specific protease to bile canalicular membranes. We have established a reconstituted system to examine the process of specific cleavage of mSC to yield fSC and to characterize the protease activity responsible. A membrane fraction highly enriched for endocytic vesicles was found to contain ~90{\%} of the [35S]Cys-mSC from metabolically labeled rat liver slices but only 5{\%} of the cellular protein. No cleavage activity was present in these vesicles. Highly enriched bile canalicular membranes were able to mediate cleavage of metabolically labeled mSC to a fragment indistinguishable from authentic fSC. In the absence of nonionic detergent, cleavage was dependent on the presence of polyethylene glycol, presumably to mediate fusion of mSC-enriched membranes with bile canalicular membranes. Following solubilization with nonionic detergent, cleavage was no longer dependent on the addition of polyethylene glycol. Cleavage of mSC was not observed with either intact or detergent-solubilized sinusoidal, microsomal, or lysosomal membranes. We have thus identified a proteolytic activity associated with bile canalicular membranes which has the properties of a membrane protein and is likely to be responsible for production of fSC in vivo. Its highly restricted localization to the bile canalicular membrane would account for the vectorial release of fSC into the bile.",
author = "Linda Musil and Baenziger, {J. U.}",
year = "1988",
language = "English (US)",
volume = "263",
pages = "15799--15808",
journal = "Journal of Biological Chemistry",
issn = "0021-9258",
publisher = "American Society for Biochemistry and Molecular Biology Inc.",
number = "30",

}

TY - JOUR

T1 - Proteolytic processing of rat liver membrane secretory component. Cleavage activity is localized to bile canalicular membranes

AU - Musil, Linda

AU - Baenziger, J. U.

PY - 1988

Y1 - 1988

N2 - Membrane secretory component (mSC) mediates the transcellular movement of polymeric IgA from the sinusoidal to the bile canalicular surface of rat hepatocytes. Prior to or concomitant with arrival at the bile canalicular membrane, mSC is cleaved, producing a soluble proteolytic fragment (fSC) which is released into the bile. Conversion of mSC to fSC occurs at the cell surface of cultured rat hepatocytes (Musil, L.S., and Baenziger, J.U. (1987) J. Cell Biol. 104, 1725-1733), suggesting that vectorial release of fSC into bile in vivo may reflect localization of a mSC-specific protease to bile canalicular membranes. We have established a reconstituted system to examine the process of specific cleavage of mSC to yield fSC and to characterize the protease activity responsible. A membrane fraction highly enriched for endocytic vesicles was found to contain ~90% of the [35S]Cys-mSC from metabolically labeled rat liver slices but only 5% of the cellular protein. No cleavage activity was present in these vesicles. Highly enriched bile canalicular membranes were able to mediate cleavage of metabolically labeled mSC to a fragment indistinguishable from authentic fSC. In the absence of nonionic detergent, cleavage was dependent on the presence of polyethylene glycol, presumably to mediate fusion of mSC-enriched membranes with bile canalicular membranes. Following solubilization with nonionic detergent, cleavage was no longer dependent on the addition of polyethylene glycol. Cleavage of mSC was not observed with either intact or detergent-solubilized sinusoidal, microsomal, or lysosomal membranes. We have thus identified a proteolytic activity associated with bile canalicular membranes which has the properties of a membrane protein and is likely to be responsible for production of fSC in vivo. Its highly restricted localization to the bile canalicular membrane would account for the vectorial release of fSC into the bile.

AB - Membrane secretory component (mSC) mediates the transcellular movement of polymeric IgA from the sinusoidal to the bile canalicular surface of rat hepatocytes. Prior to or concomitant with arrival at the bile canalicular membrane, mSC is cleaved, producing a soluble proteolytic fragment (fSC) which is released into the bile. Conversion of mSC to fSC occurs at the cell surface of cultured rat hepatocytes (Musil, L.S., and Baenziger, J.U. (1987) J. Cell Biol. 104, 1725-1733), suggesting that vectorial release of fSC into bile in vivo may reflect localization of a mSC-specific protease to bile canalicular membranes. We have established a reconstituted system to examine the process of specific cleavage of mSC to yield fSC and to characterize the protease activity responsible. A membrane fraction highly enriched for endocytic vesicles was found to contain ~90% of the [35S]Cys-mSC from metabolically labeled rat liver slices but only 5% of the cellular protein. No cleavage activity was present in these vesicles. Highly enriched bile canalicular membranes were able to mediate cleavage of metabolically labeled mSC to a fragment indistinguishable from authentic fSC. In the absence of nonionic detergent, cleavage was dependent on the presence of polyethylene glycol, presumably to mediate fusion of mSC-enriched membranes with bile canalicular membranes. Following solubilization with nonionic detergent, cleavage was no longer dependent on the addition of polyethylene glycol. Cleavage of mSC was not observed with either intact or detergent-solubilized sinusoidal, microsomal, or lysosomal membranes. We have thus identified a proteolytic activity associated with bile canalicular membranes which has the properties of a membrane protein and is likely to be responsible for production of fSC in vivo. Its highly restricted localization to the bile canalicular membrane would account for the vectorial release of fSC into the bile.

UR - http://www.scopus.com/inward/record.url?scp=0023791911&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0023791911&partnerID=8YFLogxK

M3 - Article

C2 - 3049612

AN - SCOPUS:0023791911

VL - 263

SP - 15799

EP - 15808

JO - Journal of Biological Chemistry

JF - Journal of Biological Chemistry

SN - 0021-9258

IS - 30

ER -