Promoter recognition by a complex of Spx and the C-terminal domain of the RNA polymerase α subunit

Michiko Nakano, Ann Lin, Cole S. Zuber, Kate J. Newberry, Richard G. Brennan, Peter Zuber

Research output: Contribution to journalArticle

38 Citations (Scopus)

Abstract

Background: Spx, an ArsC (arsenate reductase) family member, is a global transcriptional regulator of the microbial stress response and is highly conserved amongst Gram-positive bacteria. Bacillus subtilis Spx protein exerts positive and negative control of transcription through its interaction with the C-terminal domain of the RNA polymerase (RNAP) α subunit (αCTD). Spx activates trxA (thioredoxin) and trxB (thioredoxin reductase) in response to thiol stress, and bears an N-terminal C10XXC13 redox disulfide center that is oxidized in active Spx. Methodology/Principal Findings: The structure of mutant SpxC10S showed a change in the conformation of helix α4. Amino acid substitutions R60E and K62E within and adjacent to helix α4 conferred defects in Spx-activated transcription but not Spx-dependent repression. Electrophoretic mobility-shift assays showed αCTD interaction with trxB promoter DNA, but addition of Spx generated a supershifted complex that was disrupted in the presence of reductant (DTT). Interaction of αCTD/Spx complex with promoter DNA required the cis-acting elements -45AGCA-42 and -34AGCG-31 of the trxB promoter. The SpxG52R mutant, defective in αCTD binding, did not interact with the αCTD-trxB complex. Spx R60E not only failed to complex with aCTD-trxB, but also disrupted αCTD-trxB DNA interaction. Conclusions/Significance: The results show that Spx and αCTD form a complex that recognizes the promoter DNA of an Spx-controlled gene. A conformational change during oxidation of Spx to the disulfide form likely alters the structure of Spx α helix α4, which contains residues that function in transcriptional activation and αCTD/Spx-promoter interaction. The results suggest that one of these residues, R60 of the α4 region of oxidized Spx, functions in αCTD/Spx-promoter contact but not in αCTD interaction.

Original languageEnglish (US)
Article numbere8664
JournalPLoS One
Volume5
Issue number1
DOIs
StatePublished - Jan 13 2010

Fingerprint

DNA-Directed RNA Polymerases
DNA-directed RNA polymerase
promoter regions
DNA
Transcription
Disulfides
Arsenate Reductases
Thioredoxin-Disulfide Reductase
sulfides
Electrophoretic mobility
Thioredoxins
Reducing Agents
Gram-Positive Bacteria
Electrophoretic Mobility Shift Assay
Bacilli
Amino Acid Substitution
transcription (genetics)
Bacillus subtilis
Sulfhydryl Compounds
Transcriptional Activation

ASJC Scopus subject areas

  • Agricultural and Biological Sciences(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Medicine(all)

Cite this

Promoter recognition by a complex of Spx and the C-terminal domain of the RNA polymerase α subunit. / Nakano, Michiko; Lin, Ann; Zuber, Cole S.; Newberry, Kate J.; Brennan, Richard G.; Zuber, Peter.

In: PLoS One, Vol. 5, No. 1, e8664, 13.01.2010.

Research output: Contribution to journalArticle

Nakano, Michiko ; Lin, Ann ; Zuber, Cole S. ; Newberry, Kate J. ; Brennan, Richard G. ; Zuber, Peter. / Promoter recognition by a complex of Spx and the C-terminal domain of the RNA polymerase α subunit. In: PLoS One. 2010 ; Vol. 5, No. 1.
@article{ca77860ad6ce4377b77fa26051c971bf,
title = "Promoter recognition by a complex of Spx and the C-terminal domain of the RNA polymerase α subunit",
abstract = "Background: Spx, an ArsC (arsenate reductase) family member, is a global transcriptional regulator of the microbial stress response and is highly conserved amongst Gram-positive bacteria. Bacillus subtilis Spx protein exerts positive and negative control of transcription through its interaction with the C-terminal domain of the RNA polymerase (RNAP) α subunit (αCTD). Spx activates trxA (thioredoxin) and trxB (thioredoxin reductase) in response to thiol stress, and bears an N-terminal C10XXC13 redox disulfide center that is oxidized in active Spx. Methodology/Principal Findings: The structure of mutant SpxC10S showed a change in the conformation of helix α4. Amino acid substitutions R60E and K62E within and adjacent to helix α4 conferred defects in Spx-activated transcription but not Spx-dependent repression. Electrophoretic mobility-shift assays showed αCTD interaction with trxB promoter DNA, but addition of Spx generated a supershifted complex that was disrupted in the presence of reductant (DTT). Interaction of αCTD/Spx complex with promoter DNA required the cis-acting elements -45AGCA-42 and -34AGCG-31 of the trxB promoter. The SpxG52R mutant, defective in αCTD binding, did not interact with the αCTD-trxB complex. Spx R60E not only failed to complex with aCTD-trxB, but also disrupted αCTD-trxB DNA interaction. Conclusions/Significance: The results show that Spx and αCTD form a complex that recognizes the promoter DNA of an Spx-controlled gene. A conformational change during oxidation of Spx to the disulfide form likely alters the structure of Spx α helix α4, which contains residues that function in transcriptional activation and αCTD/Spx-promoter interaction. The results suggest that one of these residues, R60 of the α4 region of oxidized Spx, functions in αCTD/Spx-promoter contact but not in αCTD interaction.",
author = "Michiko Nakano and Ann Lin and Zuber, {Cole S.} and Newberry, {Kate J.} and Brennan, {Richard G.} and Peter Zuber",
year = "2010",
month = "1",
day = "13",
doi = "10.1371/journal.pone.0008664",
language = "English (US)",
volume = "5",
journal = "PLoS One",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "1",

}

TY - JOUR

T1 - Promoter recognition by a complex of Spx and the C-terminal domain of the RNA polymerase α subunit

AU - Nakano, Michiko

AU - Lin, Ann

AU - Zuber, Cole S.

AU - Newberry, Kate J.

AU - Brennan, Richard G.

AU - Zuber, Peter

PY - 2010/1/13

Y1 - 2010/1/13

N2 - Background: Spx, an ArsC (arsenate reductase) family member, is a global transcriptional regulator of the microbial stress response and is highly conserved amongst Gram-positive bacteria. Bacillus subtilis Spx protein exerts positive and negative control of transcription through its interaction with the C-terminal domain of the RNA polymerase (RNAP) α subunit (αCTD). Spx activates trxA (thioredoxin) and trxB (thioredoxin reductase) in response to thiol stress, and bears an N-terminal C10XXC13 redox disulfide center that is oxidized in active Spx. Methodology/Principal Findings: The structure of mutant SpxC10S showed a change in the conformation of helix α4. Amino acid substitutions R60E and K62E within and adjacent to helix α4 conferred defects in Spx-activated transcription but not Spx-dependent repression. Electrophoretic mobility-shift assays showed αCTD interaction with trxB promoter DNA, but addition of Spx generated a supershifted complex that was disrupted in the presence of reductant (DTT). Interaction of αCTD/Spx complex with promoter DNA required the cis-acting elements -45AGCA-42 and -34AGCG-31 of the trxB promoter. The SpxG52R mutant, defective in αCTD binding, did not interact with the αCTD-trxB complex. Spx R60E not only failed to complex with aCTD-trxB, but also disrupted αCTD-trxB DNA interaction. Conclusions/Significance: The results show that Spx and αCTD form a complex that recognizes the promoter DNA of an Spx-controlled gene. A conformational change during oxidation of Spx to the disulfide form likely alters the structure of Spx α helix α4, which contains residues that function in transcriptional activation and αCTD/Spx-promoter interaction. The results suggest that one of these residues, R60 of the α4 region of oxidized Spx, functions in αCTD/Spx-promoter contact but not in αCTD interaction.

AB - Background: Spx, an ArsC (arsenate reductase) family member, is a global transcriptional regulator of the microbial stress response and is highly conserved amongst Gram-positive bacteria. Bacillus subtilis Spx protein exerts positive and negative control of transcription through its interaction with the C-terminal domain of the RNA polymerase (RNAP) α subunit (αCTD). Spx activates trxA (thioredoxin) and trxB (thioredoxin reductase) in response to thiol stress, and bears an N-terminal C10XXC13 redox disulfide center that is oxidized in active Spx. Methodology/Principal Findings: The structure of mutant SpxC10S showed a change in the conformation of helix α4. Amino acid substitutions R60E and K62E within and adjacent to helix α4 conferred defects in Spx-activated transcription but not Spx-dependent repression. Electrophoretic mobility-shift assays showed αCTD interaction with trxB promoter DNA, but addition of Spx generated a supershifted complex that was disrupted in the presence of reductant (DTT). Interaction of αCTD/Spx complex with promoter DNA required the cis-acting elements -45AGCA-42 and -34AGCG-31 of the trxB promoter. The SpxG52R mutant, defective in αCTD binding, did not interact with the αCTD-trxB complex. Spx R60E not only failed to complex with aCTD-trxB, but also disrupted αCTD-trxB DNA interaction. Conclusions/Significance: The results show that Spx and αCTD form a complex that recognizes the promoter DNA of an Spx-controlled gene. A conformational change during oxidation of Spx to the disulfide form likely alters the structure of Spx α helix α4, which contains residues that function in transcriptional activation and αCTD/Spx-promoter interaction. The results suggest that one of these residues, R60 of the α4 region of oxidized Spx, functions in αCTD/Spx-promoter contact but not in αCTD interaction.

UR - http://www.scopus.com/inward/record.url?scp=77952518664&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77952518664&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0008664

DO - 10.1371/journal.pone.0008664

M3 - Article

C2 - 20084284

AN - SCOPUS:77952518664

VL - 5

JO - PLoS One

JF - PLoS One

SN - 1932-6203

IS - 1

M1 - e8664

ER -