TY - JOUR
T1 - Prognostic value of coronary artery calcium in the PROMISE study (Prospective Multicenter Imaging Study for Evaluation of Chest Pain)
AU - On behalf of the PROMISE Investigators
AU - Budoff, Matthew J.
AU - Mayrhofer, Thomas
AU - Ferencik, Maros
AU - Bittner, Daniel
AU - Lee, Kerry L.
AU - Lu, Michael T.
AU - Coles, Adrian
AU - Jang, James
AU - Krishnam, Mayil
AU - Douglas, Pamela S.
AU - Hoffmann, Udo
N1 - Funding Information:
This project was supported by grants R01HL098237, R01HL098236, R01HL98305, and R01HL098235 from the National Heart, Lung, and Blood Institute. The authors are solely responsible for the design and conduct of this study, all study analyses, the drafting and editing of the article, and its final contents. This article does not necessarily represent the official views of National Heart, Lung, and Blood Institute. Dr Bittner was supported by National Institutes of Health/National Heart, Lung, and Blood Institute 5K24HL113128.
Funding Information:
Dr Budoff reports receiving grants from the National Institutes of Health and General Electric. Dr Ferencik reports receiving grant support from the American Heart Association. Dr Douglas reports receiving grant support from HeartFlow and service on a data and safety monitoring board for GE HealthCare. Dr Hoffmann reports receiving grants from the American College of Radiology Imaging Network and HeartFlow Inc during the conduct of the study and from Siemens Healthcare. The other authors report no conflicts.
Publisher Copyright:
© 2017 American Heart Association, Inc.
PY - 2017/11
Y1 - 2017/11
N2 - Background: Coronary artery calcium (CAC) is an established predictor of future major adverse atherosclerotic cardiovascular events in asymptomatic individuals. However, limited data exist as to how CAC compares with functional testing (FT) in estimating prognosis in symptomatic patients. Methods: In the PROMISE trial (Prospective Multicenter Imaging Study for Evaluation of Chest Pain), patients with stable chest pain (or dyspnea) and intermediate pretest probability for obstructive coronary artery disease were randomized to FT (exercise electrocardiography, nuclear stress, or stress echocardiography) or anatomic testing. We evaluated those who underwent CAC testing as part of the anatomic evaluation (n=4209) and compared that with results of FT (n=4602). We stratified CAC and FT results as normal or mildly, moderately, or severely abnormal (for CAC: 0, 1-99 Agatston score [AS], 100-400 AS, and >400 AS, respectively; for FT: normal, mild=late positive treadmill, moderate=early positive treadmill or single-vessel ischemia, and severe=large ischemic region abnormality). The primary end point was all-cause death, myocardial infarction, or unstable angina hospitalization over a median follow-up of 26.1 months. Cox regression models were used to calculate hazard ratios (HRs) and C statistics to determine predictive and discriminatory values. Results: Overall, the distribution of normal or mildly, moderately, or severely abnormal test results was significantly different between FT and CAC (FT: normal, n=3588 [78.0%]; mild, n=432 [9.4%]; moderate, n=217 [4.7%]; severe, n=365 [7.9%]; CAC: normal, n=1457 [34.6%]; mild, n=1340 [31.8%]; moderate, n=772 [18.3%]; severe, n=640 [15.2%]; P<0.0001). Moderate and severe abnormalities in both arms robustly predicted events (moderate: CAC: HR, 3.14; 95% confidence interval, 1.81-5.44; and FT: HR, 2.65; 95% confidence interval, 1.46-4.83; severe: CAC: HR, 3.56; 95% confidence interval, 1.99-6.36; and FT: HR, 3.88; 95% confidence interval, 2.58-5.85). In the CAC arm, the majority of events (n=112 of 133, 84%) occurred in patients with any positive CAC test (score >0), whereas fewer than half of events occurred in patients with mildly, moderately, or severely abnormal FT (n=57 of 132, 43%; P<0.001). In contrast, any abnormality on FT was significantly more specific for predicting events (78.6% for FT versus 35.2% for CAC; P<0.001). Overall discriminatory ability in predicting the primary end point of mortality, nonfatal myocardial infarction, and unstable angina hospitalization was similar and fair for both CAC and FT (C statistic, 0.67 versus 0.64). Coronary computed tomographic angiography provided significantly better prognostic information compared with FT and CAC testing (C index, 0.72). Conclusions: Among stable outpatients presenting with suspected coronary artery disease, most patients experiencing clinical events have measurable CAC at baseline, and fewer than half have any abnormalities on FT. However, an abnormal FT was more specific for cardiovascular events, leading to overall similarly modest discriminatory abilities of both tests.
AB - Background: Coronary artery calcium (CAC) is an established predictor of future major adverse atherosclerotic cardiovascular events in asymptomatic individuals. However, limited data exist as to how CAC compares with functional testing (FT) in estimating prognosis in symptomatic patients. Methods: In the PROMISE trial (Prospective Multicenter Imaging Study for Evaluation of Chest Pain), patients with stable chest pain (or dyspnea) and intermediate pretest probability for obstructive coronary artery disease were randomized to FT (exercise electrocardiography, nuclear stress, or stress echocardiography) or anatomic testing. We evaluated those who underwent CAC testing as part of the anatomic evaluation (n=4209) and compared that with results of FT (n=4602). We stratified CAC and FT results as normal or mildly, moderately, or severely abnormal (for CAC: 0, 1-99 Agatston score [AS], 100-400 AS, and >400 AS, respectively; for FT: normal, mild=late positive treadmill, moderate=early positive treadmill or single-vessel ischemia, and severe=large ischemic region abnormality). The primary end point was all-cause death, myocardial infarction, or unstable angina hospitalization over a median follow-up of 26.1 months. Cox regression models were used to calculate hazard ratios (HRs) and C statistics to determine predictive and discriminatory values. Results: Overall, the distribution of normal or mildly, moderately, or severely abnormal test results was significantly different between FT and CAC (FT: normal, n=3588 [78.0%]; mild, n=432 [9.4%]; moderate, n=217 [4.7%]; severe, n=365 [7.9%]; CAC: normal, n=1457 [34.6%]; mild, n=1340 [31.8%]; moderate, n=772 [18.3%]; severe, n=640 [15.2%]; P<0.0001). Moderate and severe abnormalities in both arms robustly predicted events (moderate: CAC: HR, 3.14; 95% confidence interval, 1.81-5.44; and FT: HR, 2.65; 95% confidence interval, 1.46-4.83; severe: CAC: HR, 3.56; 95% confidence interval, 1.99-6.36; and FT: HR, 3.88; 95% confidence interval, 2.58-5.85). In the CAC arm, the majority of events (n=112 of 133, 84%) occurred in patients with any positive CAC test (score >0), whereas fewer than half of events occurred in patients with mildly, moderately, or severely abnormal FT (n=57 of 132, 43%; P<0.001). In contrast, any abnormality on FT was significantly more specific for predicting events (78.6% for FT versus 35.2% for CAC; P<0.001). Overall discriminatory ability in predicting the primary end point of mortality, nonfatal myocardial infarction, and unstable angina hospitalization was similar and fair for both CAC and FT (C statistic, 0.67 versus 0.64). Coronary computed tomographic angiography provided significantly better prognostic information compared with FT and CAC testing (C index, 0.72). Conclusions: Among stable outpatients presenting with suspected coronary artery disease, most patients experiencing clinical events have measurable CAC at baseline, and fewer than half have any abnormalities on FT. However, an abnormal FT was more specific for cardiovascular events, leading to overall similarly modest discriminatory abilities of both tests.
KW - Calcium
KW - Coronary artery disease
KW - Diagnostic tests
KW - Prognosis
KW - Routine
UR - http://www.scopus.com/inward/record.url?scp=85037578121&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85037578121&partnerID=8YFLogxK
U2 - 10.1161/CIRCULATIONAHA.117.030578
DO - 10.1161/CIRCULATIONAHA.117.030578
M3 - Article
C2 - 28847895
AN - SCOPUS:85037578121
SN - 0009-7322
VL - 136
SP - 1993
EP - 2005
JO - Circulation
JF - Circulation
IS - 21
ER -