Presynaptic GABAB receptors regulate retinohypothalamic tract synaptic transmission by inhibiting voltage-gated Ca2+ channels

Mykhaylo G. Moldavan, Robert P. Irwin, Charles N. Allen

Research output: Contribution to journalArticlepeer-review

33 Scopus citations

Abstract

Presynaptic GABAB receptor activation inhibits glutamate release from retinohypothalamic tract (RHT) terminals in the suprachiasmatic nucleus (SCN). Voltage-clamp whole cell recordings from rat SCN neurons and optical recordings of Ca2+-sensitive fluorescent probes within RHT terminals were used to examine GABAB-receptor modulation of RHT transmission. Baclofen inhibited evoked excitatory postsynaptic currents (EPSCs) in a concentration-dependent manner equally during the day and night. Blockers of N-, P/Q-, T-, and R-type voltage-dependent Ca2+ channels, but not L-type, reduced the EPSC amplitude by 66, 36, 32, and 18% of control, respectively. Joint application of multiple Ca2+ channel blockers inhibited the EPSCs less than that predicted, consistent with a model in which multiple Ca2+ channels overlap in the regulation of transmitter release. Presynaptic inhibition of EPSCs by baclofen was occluded by ω-conotoxin GVIA (≤72%), mibefradil (≤52%), and ω-agatoxin TK (≤15%), but not by SNX-482 or nimodipine. Baclofen reduced both evoked presynaptic Ca2+ influx and resting Ca2+ concentration in RHT terminals. Tertiapin did not alter the evoked EPSC and baclofen-induced inhibition, indicating that baclofen does not inhibit glutamate release by activation of Kir3 channels. Neither Ba2+ nor high extracellular K+ modified the baclofen-induced inhibition. 4-Aminopyridine (4-AP) significantly increased the EPSC amplitude and the charge transfer, and dramatically reduced the baclofen effect. These data indicate that baclofen inhibits glutamate release from RHT terminals by blocking N-, T-, and P/Q-type Ca2+ channels, and possibly by activation of 4-AP-sensitive K + channels, but not by inhibition of R- and L-type Ca2+ channels or by Kir3 channel activation.

Original languageEnglish (US)
Pages (from-to)3727-3741
Number of pages15
JournalJournal of neurophysiology
Volume95
Issue number6
DOIs
StatePublished - Jun 2006

ASJC Scopus subject areas

  • General Neuroscience
  • Physiology

Fingerprint

Dive into the research topics of 'Presynaptic GABAB receptors regulate retinohypothalamic tract synaptic transmission by inhibiting voltage-gated Ca2+ channels'. Together they form a unique fingerprint.

Cite this