Polyurethane elastomers with low modulus and hardness based on novel copolyether macrodiols

Pathiraja A. Gunatillake, Gordon F. Meijs, Simon J. Mccarthy, Nicole Sherriff

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

A series of copolyether macrodiols was prepared from either 1,10-decanediol or 1,6-hexanediol, by acid-catalyzed condensation polymerization using several comonomers to investigate the effect of copolymerization on reducing macrodiol crystallinity. The comonomers used to disrupt crystallinity included 2,2-diethyl-1,3-propanediol, 1,4-cyclohexanedimethanol, and 1,7-heptanediol. The product copolyethers were identified as hydroxy terminated copoly(alkylene oxides) by 1H- and 13C-NMR spectroscopy. Based on NMR results, the structures of the copolyethers were established as consisting of blocks of the principal monomer with comonomer 2,2-diethyl-1,3-propanediol incorporated to form only the end structural unit, whereas 1,4-cyclohexanedimethanol incorporated to form the end unit as well as part of the main chain. DSC results confirmed that the copolymerization produced macrodiols with lower crystallinity and lower Tg, than those of the corresponding homopolyethers of the principal monomers, with two exceptions. The exceptions were 1,6-hexanediol/1,10-decanediol, and 1,10-decanediol/1,7-heptanediol copolyethers where no reduction in crystallinity was observed. A series of polyurethane elastomers with a constant hard segment percentage (40 wt % ) was prepared using 4,4′-methylenediphenyl diisocyanate and 1,4-butanediol as the hard segment. Tensile test results and Shore hardness measurements demonstrated that copolyether macrodiols produced several polyurethanes with lower modulus and hardness than those of polyurethanes based on homopolyethers of the principal monomers. Of the comonomers studied, 2,2-diethyl-1,3-propanediol-based copolyether produced the polyurethane with the lowest hardness and modulus.

Original languageEnglish (US)
Pages (from-to)1373-1384
Number of pages12
JournalJournal of Applied Polymer Science
Volume63
Issue number10
DOIs
StatePublished - Mar 7 1997
Externally publishedYes

Keywords

  • Characterization
  • Copolyether macrodiols
  • Polyurethane elastomers
  • Synthesis
  • Thermal and mechanical properties

ASJC Scopus subject areas

  • General Chemistry
  • Surfaces, Coatings and Films
  • Polymers and Plastics
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Polyurethane elastomers with low modulus and hardness based on novel copolyether macrodiols'. Together they form a unique fingerprint.

Cite this