Polymorphisms in oxidative stress pathway genes and prostate cancer risk

Zhenzhen Zhang, Duo Jiang, Chi Wang, Mark Garzotto, Ryan Kopp, Beth Wilmot, Philippe Thuillier, Andy Dang, Amy Palma, Paige E. Farris, Jackilen Shannon

Research output: Contribution to journalArticle

Abstract

Purpose: Age-related factors including oxidative stress play an important role in prostate carcinogenesis. We hypothesize that germline single-nucleotide polymorphisms (SNPs) in oxidative stress pathway are associated with prostate cancer (PCa) risk. In this study, we aim to examine which of these SNPs is associated with PCa. Methods: Participants included in this analyses came from the “Genetic Susceptibility, Environment and Prostate Cancer Risk Study” conducted at the Veterans Affairs Portland Health Care System. After applying exclusion criteria, 231 PCa cases and 382 prostate biopsy-negative controls who had genotyping data on twenty-two single-nucleotide polymorphisms (SNPs) in six genes (MAPK14, NRF2, CAT, GPX1, GSTP1, SOD2, and XDH) associated with oxidative stress pathway were included in the analyses. The genotyping of SNPs was conducted by the Illumina BeadXpress VeraCode platform. We investigated these SNPs in relation to overall and aggressive PCa risk using logistic regression models controlling for relevant covariates. Results: One SNP in the MAPK14 (rs851023) was significantly associated with incident PCa risk. Compared to men carrying two copies of allele A, the presence of one or two copies of the G allele was associated with decreased risk of PCa [OR (95% CI) 0.19 (0.06–0.51)]. There was no statistically significant association between other SNPs in the NRF2, CAT, GPX1, GSTP1, SOD2, and XDH genes and PCa risk. Conclusions: The MAPK14 gene SNP rs851023 was associated with PCa and aggressive PCa risk after multiple comparison adjustment. Further studies in other populations or functional studies are needed to validate the finding.

Original languageEnglish (US)
Pages (from-to)1365-1375
Number of pages11
JournalCancer Causes and Control
Volume30
Issue number12
DOIs
StatePublished - Dec 1 2019

Fingerprint

Prostatic Neoplasms
Oxidative Stress
Single Nucleotide Polymorphism
Genes
Mitogen-Activated Protein Kinase 14
Prostate
Logistic Models
Alleles
Age Factors
Veterans
Genetic Predisposition to Disease
Carcinogenesis
Cats
Delivery of Health Care
Biopsy

Keywords

  • Oxidative stress genes
  • Prostate cancer
  • SNP

ASJC Scopus subject areas

  • Oncology
  • Cancer Research

Cite this

Polymorphisms in oxidative stress pathway genes and prostate cancer risk. / Zhang, Zhenzhen; Jiang, Duo; Wang, Chi; Garzotto, Mark; Kopp, Ryan; Wilmot, Beth; Thuillier, Philippe; Dang, Andy; Palma, Amy; Farris, Paige E.; Shannon, Jackilen.

In: Cancer Causes and Control, Vol. 30, No. 12, 01.12.2019, p. 1365-1375.

Research output: Contribution to journalArticle

Zhang, Zhenzhen ; Jiang, Duo ; Wang, Chi ; Garzotto, Mark ; Kopp, Ryan ; Wilmot, Beth ; Thuillier, Philippe ; Dang, Andy ; Palma, Amy ; Farris, Paige E. ; Shannon, Jackilen. / Polymorphisms in oxidative stress pathway genes and prostate cancer risk. In: Cancer Causes and Control. 2019 ; Vol. 30, No. 12. pp. 1365-1375.
@article{189425a5dd25480883709a02f2927ab7,
title = "Polymorphisms in oxidative stress pathway genes and prostate cancer risk",
abstract = "Purpose: Age-related factors including oxidative stress play an important role in prostate carcinogenesis. We hypothesize that germline single-nucleotide polymorphisms (SNPs) in oxidative stress pathway are associated with prostate cancer (PCa) risk. In this study, we aim to examine which of these SNPs is associated with PCa. Methods: Participants included in this analyses came from the “Genetic Susceptibility, Environment and Prostate Cancer Risk Study” conducted at the Veterans Affairs Portland Health Care System. After applying exclusion criteria, 231 PCa cases and 382 prostate biopsy-negative controls who had genotyping data on twenty-two single-nucleotide polymorphisms (SNPs) in six genes (MAPK14, NRF2, CAT, GPX1, GSTP1, SOD2, and XDH) associated with oxidative stress pathway were included in the analyses. The genotyping of SNPs was conducted by the Illumina BeadXpress VeraCode platform. We investigated these SNPs in relation to overall and aggressive PCa risk using logistic regression models controlling for relevant covariates. Results: One SNP in the MAPK14 (rs851023) was significantly associated with incident PCa risk. Compared to men carrying two copies of allele A, the presence of one or two copies of the G allele was associated with decreased risk of PCa [OR (95{\%} CI) 0.19 (0.06–0.51)]. There was no statistically significant association between other SNPs in the NRF2, CAT, GPX1, GSTP1, SOD2, and XDH genes and PCa risk. Conclusions: The MAPK14 gene SNP rs851023 was associated with PCa and aggressive PCa risk after multiple comparison adjustment. Further studies in other populations or functional studies are needed to validate the finding.",
keywords = "Oxidative stress genes, Prostate cancer, SNP",
author = "Zhenzhen Zhang and Duo Jiang and Chi Wang and Mark Garzotto and Ryan Kopp and Beth Wilmot and Philippe Thuillier and Andy Dang and Amy Palma and Farris, {Paige E.} and Jackilen Shannon",
year = "2019",
month = "12",
day = "1",
doi = "10.1007/s10552-019-01242-7",
language = "English (US)",
volume = "30",
pages = "1365--1375",
journal = "Cancer Causes and Control",
issn = "0957-5243",
publisher = "Springer Netherlands",
number = "12",

}

TY - JOUR

T1 - Polymorphisms in oxidative stress pathway genes and prostate cancer risk

AU - Zhang, Zhenzhen

AU - Jiang, Duo

AU - Wang, Chi

AU - Garzotto, Mark

AU - Kopp, Ryan

AU - Wilmot, Beth

AU - Thuillier, Philippe

AU - Dang, Andy

AU - Palma, Amy

AU - Farris, Paige E.

AU - Shannon, Jackilen

PY - 2019/12/1

Y1 - 2019/12/1

N2 - Purpose: Age-related factors including oxidative stress play an important role in prostate carcinogenesis. We hypothesize that germline single-nucleotide polymorphisms (SNPs) in oxidative stress pathway are associated with prostate cancer (PCa) risk. In this study, we aim to examine which of these SNPs is associated with PCa. Methods: Participants included in this analyses came from the “Genetic Susceptibility, Environment and Prostate Cancer Risk Study” conducted at the Veterans Affairs Portland Health Care System. After applying exclusion criteria, 231 PCa cases and 382 prostate biopsy-negative controls who had genotyping data on twenty-two single-nucleotide polymorphisms (SNPs) in six genes (MAPK14, NRF2, CAT, GPX1, GSTP1, SOD2, and XDH) associated with oxidative stress pathway were included in the analyses. The genotyping of SNPs was conducted by the Illumina BeadXpress VeraCode platform. We investigated these SNPs in relation to overall and aggressive PCa risk using logistic regression models controlling for relevant covariates. Results: One SNP in the MAPK14 (rs851023) was significantly associated with incident PCa risk. Compared to men carrying two copies of allele A, the presence of one or two copies of the G allele was associated with decreased risk of PCa [OR (95% CI) 0.19 (0.06–0.51)]. There was no statistically significant association between other SNPs in the NRF2, CAT, GPX1, GSTP1, SOD2, and XDH genes and PCa risk. Conclusions: The MAPK14 gene SNP rs851023 was associated with PCa and aggressive PCa risk after multiple comparison adjustment. Further studies in other populations or functional studies are needed to validate the finding.

AB - Purpose: Age-related factors including oxidative stress play an important role in prostate carcinogenesis. We hypothesize that germline single-nucleotide polymorphisms (SNPs) in oxidative stress pathway are associated with prostate cancer (PCa) risk. In this study, we aim to examine which of these SNPs is associated with PCa. Methods: Participants included in this analyses came from the “Genetic Susceptibility, Environment and Prostate Cancer Risk Study” conducted at the Veterans Affairs Portland Health Care System. After applying exclusion criteria, 231 PCa cases and 382 prostate biopsy-negative controls who had genotyping data on twenty-two single-nucleotide polymorphisms (SNPs) in six genes (MAPK14, NRF2, CAT, GPX1, GSTP1, SOD2, and XDH) associated with oxidative stress pathway were included in the analyses. The genotyping of SNPs was conducted by the Illumina BeadXpress VeraCode platform. We investigated these SNPs in relation to overall and aggressive PCa risk using logistic regression models controlling for relevant covariates. Results: One SNP in the MAPK14 (rs851023) was significantly associated with incident PCa risk. Compared to men carrying two copies of allele A, the presence of one or two copies of the G allele was associated with decreased risk of PCa [OR (95% CI) 0.19 (0.06–0.51)]. There was no statistically significant association between other SNPs in the NRF2, CAT, GPX1, GSTP1, SOD2, and XDH genes and PCa risk. Conclusions: The MAPK14 gene SNP rs851023 was associated with PCa and aggressive PCa risk after multiple comparison adjustment. Further studies in other populations or functional studies are needed to validate the finding.

KW - Oxidative stress genes

KW - Prostate cancer

KW - SNP

UR - http://www.scopus.com/inward/record.url?scp=85074705767&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85074705767&partnerID=8YFLogxK

U2 - 10.1007/s10552-019-01242-7

DO - 10.1007/s10552-019-01242-7

M3 - Article

C2 - 31667711

AN - SCOPUS:85074705767

VL - 30

SP - 1365

EP - 1375

JO - Cancer Causes and Control

JF - Cancer Causes and Control

SN - 0957-5243

IS - 12

ER -