TY - JOUR
T1 - Plasmodium falciparum liver stage infection and transition to stable blood stage infection in liver-humanized and blood-humanized FRGN KO mice enables testing of blood stage inhibitory antibodies (reticulocyte-binding protein homolog 5) in vivo
AU - Foquet, Lander
AU - Schafer, Carola
AU - Minkah, Nana K.
AU - Alanine, Daniel G.W.
AU - Flannery, Erika L.
AU - Steel, Ryan W.J.
AU - Sack, Brandon K.
AU - Camargo, Nelly
AU - Fishbaugher, Matthew
AU - Betz, Will
AU - Nguyen, Thao
AU - Billman, Zachary P.
AU - Wilson, Elizabeth M.
AU - Bial, John
AU - Murphy, Sean C.
AU - Draper, Simon J.
AU - Mikolajczak, Sebastian A.
AU - Kappe, Stefan H.I.
N1 - Funding Information:
We would like to thank the insectary team at the Center for Infectious Disease Research for production of sporozoite-infected mosquitoes and Yecuris Corporation (Tualatin, OR, USA) for providing liver humanized FRGN mice. We thank Dr. Ashley Vaughan for helpful discussions and critical reading of this manuscript. This work was funded by a fellowship of the Belgian American Educational Foundation (to LF); a fellowship of the German Research Association (grant SCHA 2047/1-1) (to CS); a UK MRC iCASE PhD Studentship (grant MR/K017632/1) (to DA); a Wellcome Trust Senior Fellowship (grant 106917/Z/15/Z); and a Lister Institute Research Prize Fellowship to SD who is also a Jenner Investigator; and the Center for Infectious Disease Research internal funding sources.
Publisher Copyright:
© 2018 Foquet, Schafer, Minkah, Alanine, Flannery, Steel, Sack, Camargo, Fishbaugher, Betz, Nguyen, Billman, Wilson, Bial, Murphy, Draper, Mikolajczak and Kappe.
PY - 2018/3/14
Y1 - 2018/3/14
N2 - The invention of liver-humanized mouse models has made it possible to directly study the preerythrocytic stages of Plasmodium falciparum. In contrast, the current models to directly study blood stage infection in vivo are extremely limited. Humanization of the mouse blood stream is achievable by frequent injections of human red blood cells (hRBCs) and is currently the only system with which to study human malaria blood stage infections in a small animal model. Infections have been primarily achieved by direct injection of P. falciparum-infected RBCs but as such, this modality of infection does not model the natural route of infection by mosquito bite and lacks the transition of parasites from liver stage infection to blood stage infection. Including these life cycle transition points in a small animal model is of relevance for testing therapeutic interventions. To this end, we used FRGN KO mice that were engrafted with human hepatocytes and performed a blood exchange under immune modulation to engraft the animals with more than 50% hRBCs. These mice were infected by mosquito bite with sporozoite stages of a luciferase-expressing P. falciparum parasite, resulting in noninvasively measurable liver stage burden by in vivo bioluminescent imaging (IVIS) at days 5-7 postinfection. Transition to blood stage infection was observed by IVIS from day 8 onward and then blood stage parasitemia increased with a kinetic similar to that observed in controlled human malaria infection. To assess the utility of this model, we tested whether a monoclonal antibody targeting the erythrocyte invasion ligand reticulocyte-binding protein homolog 5 (with known growth inhibitory activity in vitro) was capable of blocking blood stage infection in vivo when parasites emerge from the liver and found it highly effective. Together, these results show that a combined liver-humanized and blood-humanized FRGN mouse model infected with luciferase-expressing P. falciparum will be a useful tool to study P. falciparum preerythrocytic and erythrocytic stages and enables the testing of interventions that target either one or both stages of parasite infection.
AB - The invention of liver-humanized mouse models has made it possible to directly study the preerythrocytic stages of Plasmodium falciparum. In contrast, the current models to directly study blood stage infection in vivo are extremely limited. Humanization of the mouse blood stream is achievable by frequent injections of human red blood cells (hRBCs) and is currently the only system with which to study human malaria blood stage infections in a small animal model. Infections have been primarily achieved by direct injection of P. falciparum-infected RBCs but as such, this modality of infection does not model the natural route of infection by mosquito bite and lacks the transition of parasites from liver stage infection to blood stage infection. Including these life cycle transition points in a small animal model is of relevance for testing therapeutic interventions. To this end, we used FRGN KO mice that were engrafted with human hepatocytes and performed a blood exchange under immune modulation to engraft the animals with more than 50% hRBCs. These mice were infected by mosquito bite with sporozoite stages of a luciferase-expressing P. falciparum parasite, resulting in noninvasively measurable liver stage burden by in vivo bioluminescent imaging (IVIS) at days 5-7 postinfection. Transition to blood stage infection was observed by IVIS from day 8 onward and then blood stage parasitemia increased with a kinetic similar to that observed in controlled human malaria infection. To assess the utility of this model, we tested whether a monoclonal antibody targeting the erythrocyte invasion ligand reticulocyte-binding protein homolog 5 (with known growth inhibitory activity in vitro) was capable of blocking blood stage infection in vivo when parasites emerge from the liver and found it highly effective. Together, these results show that a combined liver-humanized and blood-humanized FRGN mouse model infected with luciferase-expressing P. falciparum will be a useful tool to study P. falciparum preerythrocytic and erythrocytic stages and enables the testing of interventions that target either one or both stages of parasite infection.
KW - Clodronate liposomes
KW - Cyclophosphamide
KW - Humanized mouse model
KW - Plasmodium falciparum
KW - Plasmodium falciparum blood stages
KW - Reticulocyte-binding protein homolog 5
UR - http://www.scopus.com/inward/record.url?scp=85043721989&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85043721989&partnerID=8YFLogxK
U2 - 10.3389/fimmu.2018.00524
DO - 10.3389/fimmu.2018.00524
M3 - Article
AN - SCOPUS:85043721989
SN - 1664-3224
VL - 9
JO - Frontiers in Immunology
JF - Frontiers in Immunology
IS - MAR
M1 - 524
ER -