Pitch strength and pitch dominance of iterated rippled noises in hearing-impaired listeners

M. R. Leek, V. Summers

Research output: Contribution to journalArticlepeer-review

21 Scopus citations

Abstract

Reports using a variety of psychophysical tasks indicate that pitch perception by hearing-impaired listeners may be abnormal, contributing to difficulties in understanding speech and enjoying music. Pitches of complex sounds may be weaker and more indistinct in the presence of cochlear damage, especially when frequency regions are affected that form the strongest basis for pitch perception in normal-hearing listeners. In this study, the strength of the complex pitch generated by iterated rippled noise was assessed in normal-heating and hearing-impaired listeners. Pitch strength was measured for broadband noises with spectral ripples generated by iteratively delaying a copy of a given noise and adding it back into the original. Octave-band-pass versions of these noises also were evaluated to assess frequency dominance regions for rippled-noise pitch. Hearing-impaired listeners demonstrated consistently weaker pitches in response to the rippled noises relative to pitch strength in normal-hearing listeners. However, in most cases, the frequency regions of pitch dominance, i.e., strongest pitch, were similar to those observed in normal-hearing listeners. Except where there exists a substantial sensitivity loss, contributions from normal pitch dominance regions associated with the strongest pitches may not be directly related to impaired spectral processing. It is suggested that the reduced strength of rippled-noise pitch in listeners with hearing loss results from impaired frequency resolution and possibly an associated deficit in temporal processing.

Original languageEnglish (US)
Pages (from-to)2944-2954
Number of pages11
JournalJournal of the Acoustical Society of America
Volume109
Issue number6
DOIs
StatePublished - 2001
Externally publishedYes

ASJC Scopus subject areas

  • Arts and Humanities (miscellaneous)
  • Acoustics and Ultrasonics

Fingerprint

Dive into the research topics of 'Pitch strength and pitch dominance of iterated rippled noises in hearing-impaired listeners'. Together they form a unique fingerprint.

Cite this