Phorbol 12-myristate 13-acetate inhibits granulocyte-macrophage colony stimulating factor-induced protein tyrosine phosphorylation in a human factor-dependent hematopoietic cell line

Yuzuru Kanakura, Brian Druker, Jennifer DiCarlo, Stephen A. Cannistra, James D. Griffin

Research output: Contribution to journalArticle

48 Citations (Scopus)

Abstract

The human myeloid cell line MO7 requires either granulocyte-macrophage colony stimulating factor (GM-CSF) or interleukin 3 (IL-3) for proliferation. We have previously shown that both GM-CSF and IL-3 transiently induce tyrosine phosphorylation of a number of proteins, including two cytosolic proteins, p93 and p70, which are maximally phosphorylated 5-15 min after addition of growth factor to factor-deprived cells. GM-CSF-induced proliferation of MO7 cells was found to be inhibited by two activators of protein kinase C, phorbol 12-myristate 13-acetate (PMA) and bryostatin-1. PMA did not affect surface expression or affinity of the GM-CSF receptor but significantly inhibited GM-CSF- or IL-3-induced tyrosine phosphorylation of p93 and p70. In contrast, PMA augmented GM-CSF-induced tyrosine phosphorylation of another protein, p42. Pretreatment of cells with sodium orthovanadate to inhibit protein tyrosine phosphatases (PTPase) partially reversed the inhibitory effects of PMA. These results suggest that one aspect of GM-CSF and IL-3 signal transduction, protein tyrosine phosphorylation, can be inhibited by a mechanism which does not involve receptor down-regulation, and may involve either inhibition of a receptor-activated tyrosine kinase, activation of a protein tyrosine phosphatase, or both. This mechanism could be important in exerting control of proliferation of some types of hematopoietic cells.

Original languageEnglish (US)
Pages (from-to)490-495
Number of pages6
JournalJournal of Biological Chemistry
Volume266
Issue number1
StatePublished - Jan 5 1991
Externally publishedYes

Fingerprint

Phosphorylation
Granulocyte-Macrophage Colony-Stimulating Factor
Human engineering
Tyrosine
Acetates
Interleukin-3
Cells
Cell Line
Proteins
Protein Tyrosine Phosphatases
Granulocyte-Macrophage Colony-Stimulating Factor Receptors
Signal transduction
Vanadates
Receptor Protein-Tyrosine Kinases
Myeloid Cells
Protein-Tyrosine Kinases
Protein Kinase C
phorbol-12-myristate
Signal Transduction
Intercellular Signaling Peptides and Proteins

ASJC Scopus subject areas

  • Biochemistry

Cite this

Phorbol 12-myristate 13-acetate inhibits granulocyte-macrophage colony stimulating factor-induced protein tyrosine phosphorylation in a human factor-dependent hematopoietic cell line. / Kanakura, Yuzuru; Druker, Brian; DiCarlo, Jennifer; Cannistra, Stephen A.; Griffin, James D.

In: Journal of Biological Chemistry, Vol. 266, No. 1, 05.01.1991, p. 490-495.

Research output: Contribution to journalArticle

@article{a2351a1e74dd49cc988763495074c046,
title = "Phorbol 12-myristate 13-acetate inhibits granulocyte-macrophage colony stimulating factor-induced protein tyrosine phosphorylation in a human factor-dependent hematopoietic cell line",
abstract = "The human myeloid cell line MO7 requires either granulocyte-macrophage colony stimulating factor (GM-CSF) or interleukin 3 (IL-3) for proliferation. We have previously shown that both GM-CSF and IL-3 transiently induce tyrosine phosphorylation of a number of proteins, including two cytosolic proteins, p93 and p70, which are maximally phosphorylated 5-15 min after addition of growth factor to factor-deprived cells. GM-CSF-induced proliferation of MO7 cells was found to be inhibited by two activators of protein kinase C, phorbol 12-myristate 13-acetate (PMA) and bryostatin-1. PMA did not affect surface expression or affinity of the GM-CSF receptor but significantly inhibited GM-CSF- or IL-3-induced tyrosine phosphorylation of p93 and p70. In contrast, PMA augmented GM-CSF-induced tyrosine phosphorylation of another protein, p42. Pretreatment of cells with sodium orthovanadate to inhibit protein tyrosine phosphatases (PTPase) partially reversed the inhibitory effects of PMA. These results suggest that one aspect of GM-CSF and IL-3 signal transduction, protein tyrosine phosphorylation, can be inhibited by a mechanism which does not involve receptor down-regulation, and may involve either inhibition of a receptor-activated tyrosine kinase, activation of a protein tyrosine phosphatase, or both. This mechanism could be important in exerting control of proliferation of some types of hematopoietic cells.",
author = "Yuzuru Kanakura and Brian Druker and Jennifer DiCarlo and Cannistra, {Stephen A.} and Griffin, {James D.}",
year = "1991",
month = "1",
day = "5",
language = "English (US)",
volume = "266",
pages = "490--495",
journal = "Journal of Biological Chemistry",
issn = "0021-9258",
publisher = "American Society for Biochemistry and Molecular Biology Inc.",
number = "1",

}

TY - JOUR

T1 - Phorbol 12-myristate 13-acetate inhibits granulocyte-macrophage colony stimulating factor-induced protein tyrosine phosphorylation in a human factor-dependent hematopoietic cell line

AU - Kanakura, Yuzuru

AU - Druker, Brian

AU - DiCarlo, Jennifer

AU - Cannistra, Stephen A.

AU - Griffin, James D.

PY - 1991/1/5

Y1 - 1991/1/5

N2 - The human myeloid cell line MO7 requires either granulocyte-macrophage colony stimulating factor (GM-CSF) or interleukin 3 (IL-3) for proliferation. We have previously shown that both GM-CSF and IL-3 transiently induce tyrosine phosphorylation of a number of proteins, including two cytosolic proteins, p93 and p70, which are maximally phosphorylated 5-15 min after addition of growth factor to factor-deprived cells. GM-CSF-induced proliferation of MO7 cells was found to be inhibited by two activators of protein kinase C, phorbol 12-myristate 13-acetate (PMA) and bryostatin-1. PMA did not affect surface expression or affinity of the GM-CSF receptor but significantly inhibited GM-CSF- or IL-3-induced tyrosine phosphorylation of p93 and p70. In contrast, PMA augmented GM-CSF-induced tyrosine phosphorylation of another protein, p42. Pretreatment of cells with sodium orthovanadate to inhibit protein tyrosine phosphatases (PTPase) partially reversed the inhibitory effects of PMA. These results suggest that one aspect of GM-CSF and IL-3 signal transduction, protein tyrosine phosphorylation, can be inhibited by a mechanism which does not involve receptor down-regulation, and may involve either inhibition of a receptor-activated tyrosine kinase, activation of a protein tyrosine phosphatase, or both. This mechanism could be important in exerting control of proliferation of some types of hematopoietic cells.

AB - The human myeloid cell line MO7 requires either granulocyte-macrophage colony stimulating factor (GM-CSF) or interleukin 3 (IL-3) for proliferation. We have previously shown that both GM-CSF and IL-3 transiently induce tyrosine phosphorylation of a number of proteins, including two cytosolic proteins, p93 and p70, which are maximally phosphorylated 5-15 min after addition of growth factor to factor-deprived cells. GM-CSF-induced proliferation of MO7 cells was found to be inhibited by two activators of protein kinase C, phorbol 12-myristate 13-acetate (PMA) and bryostatin-1. PMA did not affect surface expression or affinity of the GM-CSF receptor but significantly inhibited GM-CSF- or IL-3-induced tyrosine phosphorylation of p93 and p70. In contrast, PMA augmented GM-CSF-induced tyrosine phosphorylation of another protein, p42. Pretreatment of cells with sodium orthovanadate to inhibit protein tyrosine phosphatases (PTPase) partially reversed the inhibitory effects of PMA. These results suggest that one aspect of GM-CSF and IL-3 signal transduction, protein tyrosine phosphorylation, can be inhibited by a mechanism which does not involve receptor down-regulation, and may involve either inhibition of a receptor-activated tyrosine kinase, activation of a protein tyrosine phosphatase, or both. This mechanism could be important in exerting control of proliferation of some types of hematopoietic cells.

UR - http://www.scopus.com/inward/record.url?scp=0025957231&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0025957231&partnerID=8YFLogxK

M3 - Article

C2 - 1845978

AN - SCOPUS:0025957231

VL - 266

SP - 490

EP - 495

JO - Journal of Biological Chemistry

JF - Journal of Biological Chemistry

SN - 0021-9258

IS - 1

ER -