Perturbation theory for optical diffusion theory: General approach for absorbing and scattering objects in tissue

Martin R. Ostermeyer, Steven L. Jacques

Research output: Chapter in Book/Report/Conference proceedingConference contribution

8 Scopus citations

Abstract

We develop a perturbation theory for diffuse light transport in random media that is applicable to objects with different scattering and absorption than the surrounding medium. The effect of an object with increased absorption is a simple depletion of the surrounding light field. An object with increased scattering causes a similar depletion that can be interpreted as scattering induced absorption. Additionally, a sharp transition of the scattering coefficient at the surface causes a dipole-like surface induced back scattering of light in the direction of the source. In an example we show that the first order 'Born' approximation fails for too strong perturbations, but that an iterative algorithm to calculate higher order approximations can still yield accurate results.

Original languageEnglish (US)
Title of host publicationOptical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media
Subtitle of host publicationTheory, Human Studies, and Instrumentation
EditorsBritton Chance, Robert R. Alfano
PublisherSPIE
Pages98-102
Number of pages5
ISBN (Electronic)9780819417367
DOIs
StatePublished - May 30 1995
Externally publishedYes
EventOptical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation - San Jose, United States
Duration: Feb 1 1995Feb 28 1995

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume2389
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Other

OtherOptical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation
Country/TerritoryUnited States
CitySan Jose
Period2/1/952/28/95

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Perturbation theory for optical diffusion theory: General approach for absorbing and scattering objects in tissue'. Together they form a unique fingerprint.

Cite this