Parrot Genomes and the Evolution of Heightened Longevity and Cognition

Morgan Wirthlin, Nicholas C.B. Lima, Rafael Lucas Muniz Guedes, André E.R. Soares, Luiz Gonzaga P. Almeida, Nathalia P. Cavaleiro, Guilherme Loss de Morais, Anderson V. Chaves, Jason T. Howard, Marcus de Melo Teixeira, Patricia N. Schneider, Fabrício R. Santos, Michael C. Schatz, Maria Sueli Felipe, Cristina Y. Miyaki, Alexandre Aleixo, Maria P.C. Schneider, Erich D. Jarvis, Ana Tereza R. Vasconcelos, Francisco ProsdocimiClaudio Mello

Research output: Contribution to journalArticle

6 Scopus citations

Abstract

Parrots are one of the most distinct and intriguing groups of birds, with highly expanded brains [1], highly developed cognitive [2] and vocal communication [3] skills, and a long lifespan compared to other similar-sized birds [4]. Yet the genetic basis of these traits remains largely unidentified. To address this question, we have generated a high-coverage, annotated assembly of the genome of the blue-fronted Amazon (Amazona aestiva) and carried out extensive comparative analyses with 30 other avian species, including 4 additional parrots. We identified several genomic features unique to parrots, including parrot-specific novel genes and parrot-specific modifications to coding and regulatory sequences of existing genes. We also discovered genomic features under strong selection in parrots and other long-lived birds, including genes previously associated with lifespan determination as well as several hundred new candidate genes. These genes support a range of cellular functions, including telomerase activity; DNA damage repair; control of cell proliferation, cancer, and immunity; and anti-oxidative mechanisms. We also identified brain-expressed, parrot-specific paralogs with known functions in neural development or vocal-learning brain circuits. Intriguingly, parrot-specific changes in conserved regulatory sequences were overwhelmingly associated with genes that are linked to cognitive abilities and have undergone similar selection in the human lineage, suggesting convergent evolution. These findings bring novel insights into the genetics and evolution of longevity and cognition, as well as provide novel targets for exploring the mechanistic basis of these traits.

Original languageEnglish (US)
Pages (from-to)4001-4008.e7
JournalCurrent Biology
Volume28
Issue number24
DOIs
Publication statusPublished - Dec 17 2018

    Fingerprint

Keywords

  • Amazona aestiva
  • cognition
  • evolution
  • genome
  • genomics
  • longevity
  • parrot
  • Psittaciformes
  • telomerase
  • ultraconserved elements

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)

Cite this

Wirthlin, M., Lima, N. C. B., Guedes, R. L. M., Soares, A. E. R., Almeida, L. G. P., Cavaleiro, N. P., ... Mello, C. (2018). Parrot Genomes and the Evolution of Heightened Longevity and Cognition. Current Biology, 28(24), 4001-4008.e7. https://doi.org/10.1016/j.cub.2018.10.050