Parameterized novelty detection for environmental sensor monitoring

Cynthia Archer, Todd K. Leen, Antonio Baptista

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

As part of an environmental observation and forecasting system, sensors deployed in the Columbia RIver Estuary (CORIE) gather information on physical dynamics and changes in estuary habitat. Of these, salinity sensors are particularly susceptible to bio- fouling, which gradually degrades sensor response and corrupts critical data. Automatic fault detectors have the capability to identify bio-fouling early and minimize data loss. Complicating the development of discriminatory classifiers is the scarcity of bio-fouling onset examples and the variability of the bio-fouling signature. To solve these problems, we take a novelty detection approach that incorporates a parameterized bio-fouling model. These detectors identify the occurrence of bio-fouling, and its onset time as reliably as human experts. Real-time detectors installed during the summer of 2001 produced no false alarms, yet detected all episodes of sensor degradation before the field staff scheduled these sensors for cleaning. From this initial deployment through February 2003, our bio-fouling detectors have essentially doubled the amount of useful data coming from the CORIE sensors.

Original languageEnglish (US)
Title of host publicationAdvances in Neural Information Processing Systems 16 - Proceedings of the 2003 Conference, NIPS 2003
PublisherNeural information processing systems foundation
ISBN (Print)0262201526, 9780262201520
StatePublished - Jan 1 2004
Event17th Annual Conference on Neural Information Processing Systems, NIPS 2003 - Vancouver, BC, Canada
Duration: Dec 8 2003Dec 13 2003

Publication series

NameAdvances in Neural Information Processing Systems
ISSN (Print)1049-5258

Other

Other17th Annual Conference on Neural Information Processing Systems, NIPS 2003
CountryCanada
CityVancouver, BC
Period12/8/0312/13/03

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint Dive into the research topics of 'Parameterized novelty detection for environmental sensor monitoring'. Together they form a unique fingerprint.

  • Cite this

    Archer, C., Leen, T. K., & Baptista, A. (2004). Parameterized novelty detection for environmental sensor monitoring. In Advances in Neural Information Processing Systems 16 - Proceedings of the 2003 Conference, NIPS 2003 (Advances in Neural Information Processing Systems). Neural information processing systems foundation.