Osmotic flow through the placental barrier of chronically prepared sheep.

T. Armentrout, S. Katz, Kent Thornburg, J. J. Faber

Research output: Contribution to journalArticle

Abstract

An electromagnetic flow sensor was placed on the distal aorta of sheep fetuses in utero, and catheters were placed in a femoral artery and the common umbilical vein. Catheters were also placed in a carotid artery and a uterine vein of the pregnant ewe. Three days postoperatively maternal plasma was hyperosmotic with respect to fetal plasma by all methods: +5.8 +/- 1.4 SE by vapor-pressure osmometry, +2.2 +/- 0.7 SE by freezing-point depression osmometry corrected for bicarbonate loss; and +3.26 mosmol/liter by chemical measurement of plasma constituents. Maternal or fetal plasma was made hypertonic in vivo by infusion of concentrated solutions of mannitol, sucrose, or NaCl. Transplacental water flux was calculated from placental blood flows and arteriovenous differences in water content of the blood. The apparent osmotic conductivity of the placenta was 61 ml2-mosmol-1-kg-1, but this value should be divided by an unknown reflection coefficient to yield the true osmotic conductivity. Separate measurements were made of the placental diffusional permeability of Na+ and Cl- in five chronically prepared sheep fetuses: PSNa+ =0.20 +/- 0.04, PSCl- = 0.27 +/- 0.04 ml/(min-kg fetus). There was a highly significant positive regression between (total) placental permeability and fetal weight.

Original languageEnglish (US)
JournalThe American journal of physiology
Volume233
Issue number4
StatePublished - Oct 1977
Externally publishedYes

Fingerprint

Sheep
Osmometry
Fetus
Permeability
Catheters
Mothers
Vapor Pressure
Umbilical Veins
Fetal Weight
Water
Electromagnetic Phenomena
Mannitol
Femoral Artery
Bicarbonates
Carotid Arteries
Placenta
Freezing
Sucrose
Aorta
Veins

ASJC Scopus subject areas

  • Medicine(all)

Cite this

Osmotic flow through the placental barrier of chronically prepared sheep. / Armentrout, T.; Katz, S.; Thornburg, Kent; Faber, J. J.

In: The American journal of physiology, Vol. 233, No. 4, 10.1977.

Research output: Contribution to journalArticle

@article{864303778f22435dbe51447033aeb12c,
title = "Osmotic flow through the placental barrier of chronically prepared sheep.",
abstract = "An electromagnetic flow sensor was placed on the distal aorta of sheep fetuses in utero, and catheters were placed in a femoral artery and the common umbilical vein. Catheters were also placed in a carotid artery and a uterine vein of the pregnant ewe. Three days postoperatively maternal plasma was hyperosmotic with respect to fetal plasma by all methods: +5.8 +/- 1.4 SE by vapor-pressure osmometry, +2.2 +/- 0.7 SE by freezing-point depression osmometry corrected for bicarbonate loss; and +3.26 mosmol/liter by chemical measurement of plasma constituents. Maternal or fetal plasma was made hypertonic in vivo by infusion of concentrated solutions of mannitol, sucrose, or NaCl. Transplacental water flux was calculated from placental blood flows and arteriovenous differences in water content of the blood. The apparent osmotic conductivity of the placenta was 61 ml2-mosmol-1-kg-1, but this value should be divided by an unknown reflection coefficient to yield the true osmotic conductivity. Separate measurements were made of the placental diffusional permeability of Na+ and Cl- in five chronically prepared sheep fetuses: PSNa+ =0.20 +/- 0.04, PSCl- = 0.27 +/- 0.04 ml/(min-kg fetus). There was a highly significant positive regression between (total) placental permeability and fetal weight.",
author = "T. Armentrout and S. Katz and Kent Thornburg and Faber, {J. J.}",
year = "1977",
month = "10",
language = "English (US)",
volume = "233",
journal = "American Journal of Physiology - Renal Fluid and Electrolyte Physiology",
issn = "1931-857X",
publisher = "American Physiological Society",
number = "4",

}

TY - JOUR

T1 - Osmotic flow through the placental barrier of chronically prepared sheep.

AU - Armentrout, T.

AU - Katz, S.

AU - Thornburg, Kent

AU - Faber, J. J.

PY - 1977/10

Y1 - 1977/10

N2 - An electromagnetic flow sensor was placed on the distal aorta of sheep fetuses in utero, and catheters were placed in a femoral artery and the common umbilical vein. Catheters were also placed in a carotid artery and a uterine vein of the pregnant ewe. Three days postoperatively maternal plasma was hyperosmotic with respect to fetal plasma by all methods: +5.8 +/- 1.4 SE by vapor-pressure osmometry, +2.2 +/- 0.7 SE by freezing-point depression osmometry corrected for bicarbonate loss; and +3.26 mosmol/liter by chemical measurement of plasma constituents. Maternal or fetal plasma was made hypertonic in vivo by infusion of concentrated solutions of mannitol, sucrose, or NaCl. Transplacental water flux was calculated from placental blood flows and arteriovenous differences in water content of the blood. The apparent osmotic conductivity of the placenta was 61 ml2-mosmol-1-kg-1, but this value should be divided by an unknown reflection coefficient to yield the true osmotic conductivity. Separate measurements were made of the placental diffusional permeability of Na+ and Cl- in five chronically prepared sheep fetuses: PSNa+ =0.20 +/- 0.04, PSCl- = 0.27 +/- 0.04 ml/(min-kg fetus). There was a highly significant positive regression between (total) placental permeability and fetal weight.

AB - An electromagnetic flow sensor was placed on the distal aorta of sheep fetuses in utero, and catheters were placed in a femoral artery and the common umbilical vein. Catheters were also placed in a carotid artery and a uterine vein of the pregnant ewe. Three days postoperatively maternal plasma was hyperosmotic with respect to fetal plasma by all methods: +5.8 +/- 1.4 SE by vapor-pressure osmometry, +2.2 +/- 0.7 SE by freezing-point depression osmometry corrected for bicarbonate loss; and +3.26 mosmol/liter by chemical measurement of plasma constituents. Maternal or fetal plasma was made hypertonic in vivo by infusion of concentrated solutions of mannitol, sucrose, or NaCl. Transplacental water flux was calculated from placental blood flows and arteriovenous differences in water content of the blood. The apparent osmotic conductivity of the placenta was 61 ml2-mosmol-1-kg-1, but this value should be divided by an unknown reflection coefficient to yield the true osmotic conductivity. Separate measurements were made of the placental diffusional permeability of Na+ and Cl- in five chronically prepared sheep fetuses: PSNa+ =0.20 +/- 0.04, PSCl- = 0.27 +/- 0.04 ml/(min-kg fetus). There was a highly significant positive regression between (total) placental permeability and fetal weight.

UR - http://www.scopus.com/inward/record.url?scp=0017540247&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0017540247&partnerID=8YFLogxK

M3 - Article

VL - 233

JO - American Journal of Physiology - Renal Fluid and Electrolyte Physiology

JF - American Journal of Physiology - Renal Fluid and Electrolyte Physiology

SN - 1931-857X

IS - 4

ER -