Origins of cerebellar mossy and climbing fibers immunoreactive for corticotropin-releasing factor in the rabbit

P. Errico, N. H. Barmack

Research output: Contribution to journalArticle

30 Citations (Scopus)

Abstract

Corticotropin-releasing factor (CRF) has been implicated by both anatomical and physiological techniques as a potential cerebellar transmitter or modulator. In the present experiment, with the aid of immunohistochemistry, we have described specific cerebellar afferent pathways in the rabbit in which CRF is located. CRF-immunoreactive climbing fibers were present in the molecular layer throughout the cerebellum, but especially in lobules 8-9a. All inferior olivary neurons were CRF-immunoreactive. In lobules 8-9a, CRF-immunoreactive mossy fibers were organized in sagittal bands. The highest density of CRF-immunoreactive mossy fiber terminals was observed in the granule cell layer of lobules 8-9a and the flocculus. No CRF- immunoreactive perikarya were located in rabbit cerebellum. The brainstem origin of CRF-immunoreactive mossy fiber terminals was suggested by numerous CRF-immunoreactive perikarya located in the medial, lateral and descending vestibular nuclei, nucleus prepositus hypoglossi, nucleus x, paramedian reticular nucleus, gigantocellular reticular nucleus, lateral reticular nucleus, and raphe nuclei. Using double label experiments, we investigated the specific CRF afferent projection to the flocculus and posterior vermis. Horseradish peroxidase (HRP) injections into the posterior vermis double labeled CRF-immunoreactive neurons in the caudal medial and descending vestibular nuclei and nucleus prepositus hypoglossi. HRP injections into the flocculus double labeled more CRF-immunoreactive neurons in the nucleus prepositus hypoglossi than in the vestibular nuclei. HRP injections into either the posterior vermis or flocculus double labeled CRF-immunoreactive neurons in the paramedian reticular nucleus, nucleus reticularis gigantocellularis, and raphe nuclei. These data suggest that CRF may play an important role in vestibularly related functions of the cerebellum.

Original languageEnglish (US)
Pages (from-to)307-320
Number of pages14
JournalJournal of Comparative Neurology
Volume336
Issue number2
StatePublished - 1993

Fingerprint

Corticotropin-Releasing Hormone
Nerve Fibers
Rabbits
Horseradish Peroxidase
Cerebellum
Vestibular Nuclei
Neurons
Raphe Nuclei
Injections
Lateral Vestibular Nucleus
Afferent Pathways
Brain Stem

Keywords

  • CRF
  • inferior olive
  • nucleus prepositus hypoglossi
  • raphe nuclei
  • vestibular complex

ASJC Scopus subject areas

  • Neuroscience(all)

Cite this

Origins of cerebellar mossy and climbing fibers immunoreactive for corticotropin-releasing factor in the rabbit. / Errico, P.; Barmack, N. H.

In: Journal of Comparative Neurology, Vol. 336, No. 2, 1993, p. 307-320.

Research output: Contribution to journalArticle

@article{0bf95266f13643dfb9c688da62295965,
title = "Origins of cerebellar mossy and climbing fibers immunoreactive for corticotropin-releasing factor in the rabbit",
abstract = "Corticotropin-releasing factor (CRF) has been implicated by both anatomical and physiological techniques as a potential cerebellar transmitter or modulator. In the present experiment, with the aid of immunohistochemistry, we have described specific cerebellar afferent pathways in the rabbit in which CRF is located. CRF-immunoreactive climbing fibers were present in the molecular layer throughout the cerebellum, but especially in lobules 8-9a. All inferior olivary neurons were CRF-immunoreactive. In lobules 8-9a, CRF-immunoreactive mossy fibers were organized in sagittal bands. The highest density of CRF-immunoreactive mossy fiber terminals was observed in the granule cell layer of lobules 8-9a and the flocculus. No CRF- immunoreactive perikarya were located in rabbit cerebellum. The brainstem origin of CRF-immunoreactive mossy fiber terminals was suggested by numerous CRF-immunoreactive perikarya located in the medial, lateral and descending vestibular nuclei, nucleus prepositus hypoglossi, nucleus x, paramedian reticular nucleus, gigantocellular reticular nucleus, lateral reticular nucleus, and raphe nuclei. Using double label experiments, we investigated the specific CRF afferent projection to the flocculus and posterior vermis. Horseradish peroxidase (HRP) injections into the posterior vermis double labeled CRF-immunoreactive neurons in the caudal medial and descending vestibular nuclei and nucleus prepositus hypoglossi. HRP injections into the flocculus double labeled more CRF-immunoreactive neurons in the nucleus prepositus hypoglossi than in the vestibular nuclei. HRP injections into either the posterior vermis or flocculus double labeled CRF-immunoreactive neurons in the paramedian reticular nucleus, nucleus reticularis gigantocellularis, and raphe nuclei. These data suggest that CRF may play an important role in vestibularly related functions of the cerebellum.",
keywords = "CRF, inferior olive, nucleus prepositus hypoglossi, raphe nuclei, vestibular complex",
author = "P. Errico and Barmack, {N. H.}",
year = "1993",
language = "English (US)",
volume = "336",
pages = "307--320",
journal = "Journal of Comparative Neurology",
issn = "0021-9967",
publisher = "Wiley-Liss Inc.",
number = "2",

}

TY - JOUR

T1 - Origins of cerebellar mossy and climbing fibers immunoreactive for corticotropin-releasing factor in the rabbit

AU - Errico, P.

AU - Barmack, N. H.

PY - 1993

Y1 - 1993

N2 - Corticotropin-releasing factor (CRF) has been implicated by both anatomical and physiological techniques as a potential cerebellar transmitter or modulator. In the present experiment, with the aid of immunohistochemistry, we have described specific cerebellar afferent pathways in the rabbit in which CRF is located. CRF-immunoreactive climbing fibers were present in the molecular layer throughout the cerebellum, but especially in lobules 8-9a. All inferior olivary neurons were CRF-immunoreactive. In lobules 8-9a, CRF-immunoreactive mossy fibers were organized in sagittal bands. The highest density of CRF-immunoreactive mossy fiber terminals was observed in the granule cell layer of lobules 8-9a and the flocculus. No CRF- immunoreactive perikarya were located in rabbit cerebellum. The brainstem origin of CRF-immunoreactive mossy fiber terminals was suggested by numerous CRF-immunoreactive perikarya located in the medial, lateral and descending vestibular nuclei, nucleus prepositus hypoglossi, nucleus x, paramedian reticular nucleus, gigantocellular reticular nucleus, lateral reticular nucleus, and raphe nuclei. Using double label experiments, we investigated the specific CRF afferent projection to the flocculus and posterior vermis. Horseradish peroxidase (HRP) injections into the posterior vermis double labeled CRF-immunoreactive neurons in the caudal medial and descending vestibular nuclei and nucleus prepositus hypoglossi. HRP injections into the flocculus double labeled more CRF-immunoreactive neurons in the nucleus prepositus hypoglossi than in the vestibular nuclei. HRP injections into either the posterior vermis or flocculus double labeled CRF-immunoreactive neurons in the paramedian reticular nucleus, nucleus reticularis gigantocellularis, and raphe nuclei. These data suggest that CRF may play an important role in vestibularly related functions of the cerebellum.

AB - Corticotropin-releasing factor (CRF) has been implicated by both anatomical and physiological techniques as a potential cerebellar transmitter or modulator. In the present experiment, with the aid of immunohistochemistry, we have described specific cerebellar afferent pathways in the rabbit in which CRF is located. CRF-immunoreactive climbing fibers were present in the molecular layer throughout the cerebellum, but especially in lobules 8-9a. All inferior olivary neurons were CRF-immunoreactive. In lobules 8-9a, CRF-immunoreactive mossy fibers were organized in sagittal bands. The highest density of CRF-immunoreactive mossy fiber terminals was observed in the granule cell layer of lobules 8-9a and the flocculus. No CRF- immunoreactive perikarya were located in rabbit cerebellum. The brainstem origin of CRF-immunoreactive mossy fiber terminals was suggested by numerous CRF-immunoreactive perikarya located in the medial, lateral and descending vestibular nuclei, nucleus prepositus hypoglossi, nucleus x, paramedian reticular nucleus, gigantocellular reticular nucleus, lateral reticular nucleus, and raphe nuclei. Using double label experiments, we investigated the specific CRF afferent projection to the flocculus and posterior vermis. Horseradish peroxidase (HRP) injections into the posterior vermis double labeled CRF-immunoreactive neurons in the caudal medial and descending vestibular nuclei and nucleus prepositus hypoglossi. HRP injections into the flocculus double labeled more CRF-immunoreactive neurons in the nucleus prepositus hypoglossi than in the vestibular nuclei. HRP injections into either the posterior vermis or flocculus double labeled CRF-immunoreactive neurons in the paramedian reticular nucleus, nucleus reticularis gigantocellularis, and raphe nuclei. These data suggest that CRF may play an important role in vestibularly related functions of the cerebellum.

KW - CRF

KW - inferior olive

KW - nucleus prepositus hypoglossi

KW - raphe nuclei

KW - vestibular complex

UR - http://www.scopus.com/inward/record.url?scp=0027379980&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0027379980&partnerID=8YFLogxK

M3 - Article

VL - 336

SP - 307

EP - 320

JO - Journal of Comparative Neurology

JF - Journal of Comparative Neurology

SN - 0021-9967

IS - 2

ER -