Noradrenaline‐mediated synaptic inhibition in rat locus coeruleus neurones.

T. M. Egan, G. Henderson, R. A. North, J. T. Williams

Research output: Contribution to journalArticlepeer-review

164 Scopus citations

Abstract

Intracellular recordings were made from neurones in the nucleus locus coeruleus (l.c.) in slices of rat pons maintained in vitro. Focal electrical stimulation to the slice surface within the region of the l.c. evoked a synaptic depolarization followed by a hyperpolarization. These potentials were graded with stimulus intensity and were abolished in calcium‐free and/or high‐magnesium solutions. The nature of the hyperpolarizing synaptic potential (i.p.s.p.) was investigated. The i.p.s.p. amplitude decreased as the membrane was artificially made more negative and reversed at ‐114 mV. This reversal potential shifted to less negative potentials in solutions of elevated potassium ion content as predicted by the Nernst equation. The i.p.s.p. was potentiated in amplitude and its time course was prolonged by desmethylimipramine (DMI). Yohimbine (100 nM) and phentolamine (100 nM) reversibly abolished the i.p.s.p. and did not change the synaptic depolarization. Noradrenaline hyperpolarized all l.c. neurones tested, whether applied by perfusion (1‐30 microM) or by pressure ejection from a micropipette placed in the solution near the recording site. The noradrenaline‐induced hyperpolarization was accompanied by an increase in conductance and it reversed in polarity at ‐104 mV. The reversal potential of the noradrenaline hyperpolarization became less negative when the potassium ion content was increased. The noradrenaline‐induced hyperpolarization was potentiated by DMI and was antagonized by yohimbine and phentolamine in the same concentrations which blocked the i.p.s.p. The results support the notion that l.c. neurones can release noradrenaline onto the somadendritic membrane of other l.c. neurones and thereby provide local feed‐back inhibition.

Original languageEnglish (US)
Pages (from-to)477-488
Number of pages12
JournalThe Journal of Physiology
Volume345
Issue number1
DOIs
StatePublished - Dec 1 1983
Externally publishedYes

ASJC Scopus subject areas

  • Physiology

Fingerprint

Dive into the research topics of 'Noradrenaline‐mediated synaptic inhibition in rat locus coeruleus neurones.'. Together they form a unique fingerprint.

Cite this