TY - JOUR
T1 - Non-invasive evaluation of heart function with four-dimensional echocardiography
AU - Chen, Ran
AU - Zhu, Meihua
AU - Sahn, David J.
AU - Ashraf, Muhammad
N1 - Publisher Copyright:
© 2016 Chen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2016/5
Y1 - 2016/5
N2 - Background The aim of this study is to assess the accuracy and feasibility of left ventricular systolic function determined by four-dimensional echocardiography (4DE). Methods Latex balloons were sewn into the left ventricle (LV) of 20 freshly harvested pig hearts which were then passively driven by a pulsatile pump apparatus. Global longitudinal strain (GLS), global circumferential strain (GCS), global area strain (GAS) and left ventricular ejection fraction (LVEF) derived from 4DEand two-dimensional echocardiography (2DE)-derived LVEF were quantified at different stroke volumes (SV) 30–70 ml and correlated with sonomicrometry data. Results In all comparisons, GLS, GCS, GAS, 2DE-LVEF, and 4DE-LVEF demonstrated strong correlations with sonomicrometry data (r = 0.77, r = 0.89, r = 0.79, r = 0.93, r = 0.96, all P <0.001). Bland-Altman analyses showed slight overestimations of echo-derived GLS, GCS, 2DE-LVEF and 3DE-LVEF over sonomicrometry values (bias = 2.88, bias = 3.99, bias = 3.37, bias = 2.78, respectively). Furthermore, there is better agreement between GCS, 4D LVEF and sonomicrometry values compared with GLS and 2D LVEF. Conclusion Four-dimensional echocardiography accurately assesses LV function. GCS derived by 4DE is a potential alternative parameter to quantify LV systolic function.
AB - Background The aim of this study is to assess the accuracy and feasibility of left ventricular systolic function determined by four-dimensional echocardiography (4DE). Methods Latex balloons were sewn into the left ventricle (LV) of 20 freshly harvested pig hearts which were then passively driven by a pulsatile pump apparatus. Global longitudinal strain (GLS), global circumferential strain (GCS), global area strain (GAS) and left ventricular ejection fraction (LVEF) derived from 4DEand two-dimensional echocardiography (2DE)-derived LVEF were quantified at different stroke volumes (SV) 30–70 ml and correlated with sonomicrometry data. Results In all comparisons, GLS, GCS, GAS, 2DE-LVEF, and 4DE-LVEF demonstrated strong correlations with sonomicrometry data (r = 0.77, r = 0.89, r = 0.79, r = 0.93, r = 0.96, all P <0.001). Bland-Altman analyses showed slight overestimations of echo-derived GLS, GCS, 2DE-LVEF and 3DE-LVEF over sonomicrometry values (bias = 2.88, bias = 3.99, bias = 3.37, bias = 2.78, respectively). Furthermore, there is better agreement between GCS, 4D LVEF and sonomicrometry values compared with GLS and 2D LVEF. Conclusion Four-dimensional echocardiography accurately assesses LV function. GCS derived by 4DE is a potential alternative parameter to quantify LV systolic function.
UR - http://www.scopus.com/inward/record.url?scp=84983293439&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84983293439&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0154996
DO - 10.1371/journal.pone.0154996
M3 - Article
C2 - 27144844
AN - SCOPUS:84983293439
SN - 1932-6203
VL - 11
JO - PLoS One
JF - PLoS One
IS - 5
M1 - e0154996
ER -