New sub-family of lysozyme-like proteins shows no catalytic activity: Crystallographic and biochemical study of STM3605 protein from Salmonella Typhimurium

Karolina Michalska, Roslyn N. Brown, Hui Li, Robert Jedrzejczak, George S. Niemann, Fred Heffron, John R. Cort, Joshua N. Adkins, Gyorgy Babnigg, Andrzej Joachimiak

    Research output: Contribution to journalArticle

    2 Scopus citations

    Abstract

    Phage viruses that infect prokaryotes integrate their genome into the host chromosome; thus, microbial genomes typically contain genetic remnants of both recent and ancient phage infections. Often phage genes occur in clusters of atypical G+C content that reflect integration of the foreign DNA. However, some phage genes occur in isolation without other phage gene neighbors, probably resulting from horizontal gene transfer. In these cases, the phage gene product is unlikely to function as a component of a mature phage particle, and instead may have been co-opted by the host for its own benefit. The product of one such gene from Salmonella enterica serovar Typhimurium, STM3605, encodes a protein with modest sequence similarity to phage-like lysozyme (N-acetylmuramidase) but appears to lack essential catalytic residues that are strictly conserved in all lysozymes. Close homologs in other bacteria share this characteristic. The structure of the STM3605 protein was characterized by X-ray crystallography, and functional assays showed that it is a stable, folded protein whose structure closely resembles lysozyme. However, this protein is unlikely to hydrolyze peptidoglycan. Instead, STM3605 is presumed to have evolved an alternative function because it shows some lytic activity and partitions to micelles.

    Original languageEnglish (US)
    Pages (from-to)1-10
    Number of pages10
    JournalJournal of Structural and Functional Genomics
    Volume14
    Issue number1
    DOIs
    StatePublished - Mar 1 2013

    Keywords

    • Crystal structure
    • Mutagenesis
    • Oligomeric state
    • Phage-like lysozyme
    • Salmonella

    ASJC Scopus subject areas

    • Structural Biology
    • Biochemistry
    • Genetics

    Fingerprint Dive into the research topics of 'New sub-family of lysozyme-like proteins shows no catalytic activity: Crystallographic and biochemical study of STM3605 protein from Salmonella Typhimurium'. Together they form a unique fingerprint.

  • Cite this

    Michalska, K., Brown, R. N., Li, H., Jedrzejczak, R., Niemann, G. S., Heffron, F., Cort, J. R., Adkins, J. N., Babnigg, G., & Joachimiak, A. (2013). New sub-family of lysozyme-like proteins shows no catalytic activity: Crystallographic and biochemical study of STM3605 protein from Salmonella Typhimurium. Journal of Structural and Functional Genomics, 14(1), 1-10. https://doi.org/10.1007/s10969-013-9151-0