Neurobiology of stress-induced reproductive dysfunction in female macaques

Cynthia L. Bethea, Maria Luisa Centeno, Judy L. Cameron

    Research output: Contribution to journalReview articlepeer-review

    61 Scopus citations


    It is now well accepted that stress can precipitate mental and physical illness. However, it is becoming clear that given the same stress, some individuals are very vulnerable and will succumb to illness while others are more resilient and cope effectively, rather than becoming ill. This difference between individuals is called stress sensitivity. Stress sensitivity of an individual appears to be influenced by genetically inherited factors, early life (even prenatal) stress, and by the presence or absence of factors that provide protection from stress. In comparison to other stress-related diseases, the concept of sensitivity versus resilience to stress-induced reproductive dysfunction has received relatively little attention. The studies presented herein were undertaken to begin to identify stable characteristics and the neural underpinnings of individuals with sensitivity to stress-induced reproductive dysfunction. Female cynomolgus macaques with normal menstrual cycles either stop ovulating (stress sensitive) or to continue to ovulate (stress resilient) upon exposure to a combined metabolic and psychosocial stress. However, even in the absence of stress, the stress-sensitive animals have lower secretion of the ovarian steroids, estrogen and progesterone, have higher heart rates, have lower serotonin function, have fewer serotonin neurons and lower expression of pivotal serotonin-related genes, have lower expression of 5HT2A and 2C genes in the hypothalamus, have higher gene expression of GAD67 and CRH in the hypothalamus, and have reduced gonadotropin-releasing hormone transport to the anterior pituitary. Altogether, the results suggest that the neurobiology of reproductive circuits in stress-sensitive individuals is compromised. We speculate that with the application of stress, the dysfunction of these neural systems becomes exacerbated and reproductive function ceases.

    Original languageEnglish (US)
    Pages (from-to)199-230
    Number of pages32
    JournalMolecular Neurobiology
    Issue number3
    StatePublished - Dec 2008


    • Amygdala
    • Beta-endorphin
    • Corticotropin-releasing hormone
    • Cynomolgus macaque
    • Paraventricular nucleus
    • Pro-opiomelanocortin
    • Reproduction
    • Serotonin
    • Stress
    • Thalamus

    ASJC Scopus subject areas

    • Neurology
    • Cellular and Molecular Neuroscience


    Dive into the research topics of 'Neurobiology of stress-induced reproductive dysfunction in female macaques'. Together they form a unique fingerprint.

    Cite this