Neogenin interacts with matriptase-2 to facilitate hemojuvelin cleavage

Research output: Contribution to journalArticlepeer-review

55 Scopus citations

Abstract

Hemojuvelin (HJV) and matriptase-2 (MT2) are co-expressed in hepatocytes, and both are essential for systemic iron homeostasis. HJV is a glycosylphosphatidylinositol-linked membrane protein that acts as a co-receptor for bone morphogenetic proteins to induce hepcidin expression. MT2 regulates the levels of membrane-bound HJV in hepatocytes by binding to and cleaving HJV into an inactive soluble form that is released from cells. HJV also interacts with neogenin, a ubiquitously expressed transmembrane protein with multiple functions. In this study, we showed that neogenin interacted with MT2 as well as with HJV and facilitated the cleavage of HJV by MT2. In contrast, neogenin was not cleaved by MT2, indicating some degree of specificity by MT2. Down-regulation of neogenin with siRNA increased the amount of MT2 and HJV on the plasma membrane, suggesting a lack of neogenin involvement in their trafficking to the cell surface. The increase in MT2 and HJV upon neogenin knockdown was likely due to the inhibition of cell surface MT2 and HJV internalization. Analysis of the Asn-linked oligosaccharides showed that MT2 cleavage of cell surface HJV was coupled to a transition from high mannose oligosaccharides to complex oligosaccharides on HJV. These results suggest that neogenin forms a ternary complex with both MT2 and HJV at the plasma membrane. The complex facilitates HJV cleavage by MT2, and release of the cleaved HJV from the cell occurs after a retrograde trafficking through the TGN/Golgi compartments.

Original languageEnglish (US)
Pages (from-to)35104-35117
Number of pages14
JournalJournal of Biological Chemistry
Volume287
Issue number42
DOIs
StatePublished - Oct 12 2012

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'Neogenin interacts with matriptase-2 to facilitate hemojuvelin cleavage'. Together they form a unique fingerprint.

Cite this