Abstract
Multiplexed immunohistochemical (IHC) methods have been developed to evaluate multiple protein biomarkers in a single formalin-fixed paraffin-embedded (FFPE) tissue section. Since distinct populations of resident and recruited immune cells in tissues (and tumors) not only regulate progression of malignant disease, these also represent targets for novel immune-based therapies; thus, improved tissue biomarker assessment evaluating immune responses in situ are needed. To objectively identify distinct cell subsets in tissues and tumors, we adopted sparse coding approaches enabling modeling of data vectors as sparse linear combinations of basis elements, to audit cellular presence and phenotypes using image cytometry datasets with unbiased assessments. By doing comparative analyses between manual gating (ground truth) and sparse coding, we report that results are comparable as obtained by manual gating strategies, and demonstrate robustness and objectivity of this novel bioinformatics approach.
Original language | English (US) |
---|---|
Title of host publication | 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society |
Subtitle of host publication | Smarter Technology for a Healthier World, EMBC 2017 - Proceedings |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 4046-4049 |
Number of pages | 4 |
ISBN (Electronic) | 9781509028092 |
DOIs | |
State | Published - Sep 13 2017 |
Event | 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2017 - Jeju Island, Korea, Republic of Duration: Jul 11 2017 → Jul 15 2017 |
Other
Other | 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2017 |
---|---|
Country | Korea, Republic of |
City | Jeju Island |
Period | 7/11/17 → 7/15/17 |
ASJC Scopus subject areas
- Signal Processing
- Biomedical Engineering
- Computer Vision and Pattern Recognition
- Health Informatics