MR imaging-based multimodal autoidentification of perivascular spaces (mMAPS): Automated morphologic segmentation of enlarged perivascular spaces at clinical field strength

Research output: Contribution to journalArticle

11 Scopus citations

Abstract

Purpose: To describe a fully automated segmentation method that yields object-based morphologic estimates of enlarged perivascular spaces (ePVSs) in clinical-field-strength (3.0- T) magnetic resonance (MR) imaging data. Materials and Methods: In this HIPAA-compliant study, MR imaging data were obtained with a 3.0-T MR imager in research participants without dementia (mean age, 85.3 years; range, 70.4-101.2 years) who had given written informed consent. This method is built on (a) relative normalized white matter, ventricular and cortical signal intensities within T1-weighted, fluid-attenuated inversion recovery, T2- weighted, and proton density data and (b) morphologic (width, volume, linearity) characterization of each resultant cluster. Visual rating was performed by three raters, including one neuroradiologist, after established singlesection guidelines. Correlations between visual counts and automated counts, as well session-to-session correlation of counts within each participant, were assessed with the Pearson correlation coefficient r. Results: There was a significant correlation between counts by visual raters and automated detection of ePVSs in the same section (r = 0.65, P , .001; r = 0.69, P , .001; and r = 0.54, P , .01 for raters 1, 2, and 3, respectively). With regard to visual ratings and whole-brain count consistency, average visual rating scores were highly correlated with automated detection of total burden volume (r = 0.58, P , .01) and total ePVS number (r = 0.76, P , .01). Morphology of clusters across 28 data sets was consistent with published radiographic estimates of ePVS; mean width of clusters segmented was 3.12 mm (range, 1.7-13.5 mm). Conclusion: This MR imaging-based method for multimodal autoidentification of perivascular spaces yields individual wholebrain morphologic characterization of ePVS in clinical MR imaging data and is an important tool in the detailed assessment of these features.

Original languageEnglish (US)
Pages (from-to)632-642
Number of pages11
JournalRADIOLOGY
Volume286
Issue number2
DOIs
StatePublished - Feb 2018

ASJC Scopus subject areas

  • Radiology Nuclear Medicine and imaging

Fingerprint Dive into the research topics of 'MR imaging-based multimodal autoidentification of perivascular spaces (mMAPS): Automated morphologic segmentation of enlarged perivascular spaces at clinical field strength'. Together they form a unique fingerprint.

  • Cite this