Microfluidics supporting an optical instrument for multimodal single cell biomechanics

Nathalie Nève, James K. Lingwood, Shelley R. Winn, Derek C. Tretheway, Sean S. Kohles

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

Interfacing a novel micron-resolution particle image velocimetry and dual optical tweezers system (μPIVOT) with microfluidics facilitates the exposure of an individual biologic cell to a wide range of static and dynamic mechanical stress conditions. Single cells can be manipulated in a sequence of mechanical stresses (hydrostatic pressure variations, tension or compression, as well as shear and extensional fluid induced stresses) while measuring cellular deformation. The unique multimodal load states enable a new realm of single cell biomechanical studies.

Original languageEnglish (US)
Title of host publicationMicro and Nano Systems
PublisherAmerican Society of Mechanical Engineers (ASME)
Pages839-841
Number of pages3
ISBN (Electronic)079184305X
DOIs
StatePublished - Jan 1 2007
EventASME 2007 International Mechanical Engineering Congress and Exposition, IMECE 2007 - Seattle, United States
Duration: Nov 11 2007Nov 15 2007

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
Volume11

Other

OtherASME 2007 International Mechanical Engineering Congress and Exposition, IMECE 2007
CountryUnited States
CitySeattle
Period11/11/0711/15/07

ASJC Scopus subject areas

  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Microfluidics supporting an optical instrument for multimodal single cell biomechanics'. Together they form a unique fingerprint.

  • Cite this

    Nève, N., Lingwood, J. K., Winn, S. R., Tretheway, D. C., & Kohles, S. S. (2007). Microfluidics supporting an optical instrument for multimodal single cell biomechanics. In Micro and Nano Systems (pp. 839-841). (ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE); Vol. 11). American Society of Mechanical Engineers (ASME). https://doi.org/10.1115/IMECE200742004