Megakaryocytes form linear podosomes devoid of digestive properties to remodel medullar matrix

Antoine Oprescu, Déborah Michel, Adrien Antkowiak, Elodie Vega, Julien Viaud, Sara A. Courtneidge, Anita Eckly, Henri de la Salle, Gaëtan Chicanne, Catherine Léon, Bernard Payrastre, Frédérique Gaits-Iacovoni

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Bone marrow megakaryocytes (MKs) undergo a maturation involving contacts with the microenvironment before extending proplatelets through sinusoids to deliver platelets in the bloodstream. We demonstrated that MKs assemble linear F-actin-enriched podosomes on collagen I fibers. Microscopy analysis evidenced an inverse correlation between the number of dot-like versus linear podosomes over time. Confocal videomicroscopy confirmed that they derived from each-other. This dynamics was dependent on myosin IIA. Importantly, MKs progenitors expressed the Tks4/5 adaptors, displayed a strong gelatinolytic ability and did not form linear podosomes. While maturing, MKs lost Tks expression together with digestive ability. However, those MKs were still able to remodel the matrix by exerting traction on collagen I fibers through a collaboration between GPVI, ß1 integrin and linear podosomes. Our data demonstrated that a change in structure and composition of podosomes accounted for the shift of function during megakaryopoiesis. These data highlight the fact that members of the invadosome family could correspond to different maturation status of the same entity, to adapt to functional responses required by differentiation stages of the cell that bears them.

Original languageEnglish (US)
Article number6255
JournalScientific Reports
Volume12
Issue number1
DOIs
StatePublished - Dec 2022

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Megakaryocytes form linear podosomes devoid of digestive properties to remodel medullar matrix'. Together they form a unique fingerprint.

Cite this