TY - JOUR
T1 - Measurement of plasma norepinephrine and 3,4-dihydroxyphenylglycol
T2 - Method development for a translational research study
AU - Denfeld, Quin E.
AU - Habecker, Beth A.
AU - Woodward, William R.
N1 - Funding Information:
part of a parent study that was funded by the National Institutes of Health/ National Institute of Nursing Research (R01NR013492; Lee) and supported by the National Center for Advancing Translational Sciences of the National Institutes of Health (UL1TR000128). Drs. Habecker and Woodward are currently funded by the NIH/NHLBI (R01HL093056; Habecker). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.
Funding Information:
The work reported in this paper was supported by the National Institutes of Health/National Heart, Lung, and Blood Institute (NIH/NHLBI) through a post-doctoral fellowship (for Dr. Denfeld) at Oregon Health and Science University Knight Cardiovascular Institute T32HL094294). Dr. Denfeld is currently supported as a Scholar of the Oregon Building Interdisciplinary Research Careers in Women's Health K12 Program funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development of the NIH under Award Number K12HD043488.
Funding Information:
The work reported in this paper was supported by the National Institutes of Health/National Heart, Lung, and Blood Institute (NIH/NHLBI) through a post-doctoral fellowship (for Dr. Denfeld) at Oregon Health & Science University Knight Cardiovascular Institute (T32HL094294). Dr. Denfeld is currently supported as a Scholar of the Oregon Building Interdisciplinary Research Careers in Women’s Health K12 Program funded by the Eunice Kennedy Shriver National Institute of Child Health & Human Development of the NIH under Award Number K12HD043488. Plasma samples were collected as
Publisher Copyright:
© 2018 The Author(s).
PY - 2018/4/19
Y1 - 2018/4/19
N2 - Objective: Norepinephrine (NE), a sympathetic neurotransmitter, is often measured in plasma as an index of sympathetic activity. To better understand NE dynamics, it is important to measure its principal metabolite, 3,4-dihydroxyphenylglycol (DHPG), concurrently. Our aim was to present a method, developed in the course of a translational research study, to measure NE and DHPG in human plasma using high performance liquid chromatography with electrochemical detection (HPLC-ED). Results: After pre-purifying plasma samples by alumina extraction, we used HPLC-ED to separate and quantify NE and DHPG. In order to remove uric acid, which co-eluted with DHPG, a sodium bicarbonate wash was added to the alumina extraction procedure, and we oxidized the column eluates followed by reduction because catechols are reversibly oxidized whereas uric acid is irreversibly oxidized. Average recoveries of plasma NE and DHPG were 35.3 ± 1.0% and 16.3 ± 1.1%, respectively, and there was no detectable uric acid. Our estimated detection limits for NE and DHPG were approximately 85 pg/mL (0.5 pmol/mL) and 165 pg/mL (0.9 pmol/mL), respectively. The measurement of NE and DHPG in human plasma has wide applicability; thus, we describe a method to quantify plasma NE and DHPG in a laboratory setting as a useful tool for translational and clinical research.
AB - Objective: Norepinephrine (NE), a sympathetic neurotransmitter, is often measured in plasma as an index of sympathetic activity. To better understand NE dynamics, it is important to measure its principal metabolite, 3,4-dihydroxyphenylglycol (DHPG), concurrently. Our aim was to present a method, developed in the course of a translational research study, to measure NE and DHPG in human plasma using high performance liquid chromatography with electrochemical detection (HPLC-ED). Results: After pre-purifying plasma samples by alumina extraction, we used HPLC-ED to separate and quantify NE and DHPG. In order to remove uric acid, which co-eluted with DHPG, a sodium bicarbonate wash was added to the alumina extraction procedure, and we oxidized the column eluates followed by reduction because catechols are reversibly oxidized whereas uric acid is irreversibly oxidized. Average recoveries of plasma NE and DHPG were 35.3 ± 1.0% and 16.3 ± 1.1%, respectively, and there was no detectable uric acid. Our estimated detection limits for NE and DHPG were approximately 85 pg/mL (0.5 pmol/mL) and 165 pg/mL (0.9 pmol/mL), respectively. The measurement of NE and DHPG in human plasma has wide applicability; thus, we describe a method to quantify plasma NE and DHPG in a laboratory setting as a useful tool for translational and clinical research.
KW - 3 4-dihydroxyphenylglycol
KW - Electrochemical detection
KW - High performance liquid chromatography
KW - Human plasma
KW - Norepinephrine
KW - Sympathetic nervous system
UR - http://www.scopus.com/inward/record.url?scp=85045637515&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85045637515&partnerID=8YFLogxK
U2 - 10.1186/s13104-018-3352-3
DO - 10.1186/s13104-018-3352-3
M3 - Article
C2 - 29673396
AN - SCOPUS:85045637515
SN - 1756-0500
VL - 11
JO - BMC Research Notes
JF - BMC Research Notes
IS - 1
M1 - 248
ER -